精英家教网 > 高中数学 > 题目详情
已知函数f(x)、g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.
考点:函数单调性的判断与证明
专题:函数的性质及应用
分析:根据函数单调性的定义进行判断即可.
解答: 证明:设a<x1<x2<b,
∵函数g(x)在(a,b)上是增函数,且a<g(x)<b,
∴a<g(x1)<g(x2)<b;
又∵函数f(x)在(a,b)上也是增函数,
∴f(g(x1))<f(g(x2));
∴f(g(x))在(a,b)上也是增函数.
点评:本题考查了判断函数的单调性问题,可以利用单调性定义进行判断,也是复合函数的单调性问题,应记住这一结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
(x-a)2,   x≤0
x+
1
x
+a, x>0
,若f(0)是f(x)的最小值,则a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定直线l:x=-1,定点F(1,0),⊙P经过F且与l相切.
(1)求P点的轨迹C的方程.
(2)是否存在定点M,使经过该点的直线与曲线C交于A、B两点,并且以AB为直径的圆都经过原点;若有,请求出M点的坐标;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把在线段上到两端点距离之比为
5
-1
2
≈0.618的点称为黄金分割点.类似地,在解析几何中,我们称离心率为
5
-1
2
的椭圆为黄金椭圆,已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)的焦距为2c,则下列四个命题:
①a、b、c成等比数列是椭圆为黄金椭圆的充要条件;
②若椭圆是黄金椭圆且F2为右焦点,B为上顶点,A1为左顶点,则
BA1
BF2
=0
③若椭圆是黄金椭圆,直线l过椭圆中心,与椭圆交于点E、F,P为椭圆上任意一点(除顶点外),且PE与PF的斜kPE、kPF存在,则kPE•kPF为定值.
④若椭圆是黄金椭圆,P、Q为椭圆上任意两点,M为PQ中点,且PQ与OM的斜率kPQ与kOM(O为坐标原点)存在,则kPQ•kOM为定值.
⑤椭圆四个顶点构成的菱形的内切圆过椭圆的焦点是椭圆为黄金椭圆的充要条件.
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
+lnx(a∈R).
(1)求函数f(x)的单调区间;
(2)若函数f(x)在(1,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+(2a-1)x+3在(1,+∞)上是增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义min{a,b}为两数中最小数,若f(x)=min{4x+1,x+2},画出函数f(x)的图象并求出值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知棱台的两个底面面积分别是80cm2和245cm2,截得这个棱台的棱锥的高为35cm,则这个棱台的高为(  )
A、10cmB、15cm
C、20cmD、25cm

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+an-1=2n-1,n≥2,且n∈N+,则数列{
an
2n
}的前n项和为(  )
A、Sn=1-
1
2n
B、Sn=2-
1
2n-1
-
n
2n
C、Sn=n(1-
1
2n
D、Sn=2-
1
2n-1
+
n
2n

查看答案和解析>>

同步练习册答案