精英家教网 > 高中数学 > 题目详情
设f(x)=
(x-a)2,   x≤0
x+
1
x
+a, x>0
,若f(0)是f(x)的最小值,则a的取值范围为
 
考点:分段函数的应用
专题:计算题,函数的性质及应用
分析:由分段函数可得当x=0时,f(0)=a2,由于f(0)是f(x)的最小值,则(-∞,0]为减区间,即有a≥0,则有a2≤x+
1
x
+a,x>0恒成立,运用基本不等式,即可得到右边的最小值2+a,解不等式a2≤2+a,即可得到a的取值范围.
解答: 解:由于f(x)=
(x-a)2,   x≤0
x+
1
x
+a, x>0

则当x=0时,f(0)=a2
由于f(0)是f(x)的最小值,
则(-∞,0]为减区间,即有a≥0,
则有a2≤x+
1
x
+a,x>0恒成立,
由x+
1
x
≥2
x•
1
x
=2,当且仅当x=1取最小值2,
则a2≤2+a,解得-1≤a≤2.
综上,a的取值范围为[0,2].
故答案为:[0,2].
点评:本题考察了分段函数的应用,考查函数的单调性及运用,同时考查基本不等式的应用,是一道中档题,也是易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1+x
,求f(1)+f(2)+f(3)+…+f(2 014)+f(
1
2
)+f(
1
3
)+…+f(
1
2014
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合M={x|y=
1
x
},N={x|y=log2(1-x)},则集合M∩N=(  )
A、(-∞,1)B、(1,+∞)
C、(0,1)D、R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=
25
4
,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)试讨论直线l与圆C的位置关系,并叙述理由;
(2)求直线被圆C截得的弦长最小时l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
an+3
(n∈N*)

(1)求证:{
1
an
+
1
2
}
是等比数列;
(2)数列{bn}满足bn=(3n-1)•
n
2n
an
,数列{bn}的前n项和为Tn,若不等式(-
1
2
)nλ<Tn+
n
2n-1
对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设两个随机变量X,Y相互独立,且D(X)=2,D(Y)=4,则D(2X-Y+5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2-2x,x≤0
log
1
2
(x+1),x>0
,若?x∈R,f(x)≤ax+2(a∈R),则a的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是(  )
A、
1
5
B、
5
24
C、
10
81
D、
5
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)、g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.

查看答案和解析>>

同步练习册答案