精英家教网 > 高中数学 > 题目详情
如图,已知平面α⊥平面β,A、B是平面α与平面β的交线上的两个定点,DA?β,CB?β,且DA⊥α,CB⊥α,AD=4,BC=8,AB=6,在平面α上有一个动点P,使得∠APD=∠BPC,则△PAB的面积的最大值是(  )
分析:利用线面垂直的性质可以得到△PAD与△PBC是直角三角形,再由∠APD=∠BPC得到两直角三角形相似,
过P作PM⊥AB与M,则M为三角形PAB底边AB上的高,设出AM的长度t,通过解直角三角形把AM用含有t的代数式表示,代入三角形面积公式后利用配方法求面积的最大值.
解答:解:由题意平面α⊥平面β,A、B是平面α与平面β的交线上的两个定点,DA?β,CB?β,
且DA⊥α,CB⊥α,∴△PAD与△PBC是直角三角形,又∠APD=∠BPC,
∴△PAD∽△PBC,又AD=4,BC=8,
∴PB=2PA
如图,

作PM⊥AB,垂足为M,令AM=t,
在两个Rt△PAM与Rt△PBM中,AM是公共边及PB=2PA
∴PA2-t2=4PA2-(6-t)2
解得PA2=12-4t
∴PM=
12-4t-t2

∴S=
1
2
×AB×PM=
1
2
×6×
12-4t-t2
=3
12-4t-t2
=3
16-(t+2)2
≤12.
即三角形面积的最大值为12.
点评:本题考查了平面与平面垂直的性质,考查了学生的空间想象能力,解答此题的关键是借助于三角形相似寻找关系,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、如图,已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,则在四棱锥P-ABCD中,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.
求证:AP∥GH.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥A-BCD的底面是等边三角形,三条侧棱长都等于1,且∠BAC=30°,M,N分别在棱AC和AD上.
(1)将侧面沿AB展开在同一个平面上,如图②所示,求证:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)当BM+MN+NB取得最小值时,证明:CD∥平面BMN

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直角梯ACDE所在的平面垂直于平ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(Ⅰ)P是线段BC中点,证明DP∥平面EAB;
(Ⅱ)求平面EBD与平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:044

如图,已知平面a与平面交于abbba交于Ac在内,且ca,求证bc是异面直线

 

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

如图,已知平面a与平面交于abbba交于Ac在内,且ca,求证bc是异面直线

 

查看答案和解析>>

同步练习册答案