分析 利用两角和与差的公式和二倍角公式展开化简直接可得答案.
解答 解:$\frac{cos(α+135°)cos(α+45°)}{cos2α}$=$\frac{(cosαcos135°-sinαsin135°)(cosαcos45°-sinαsin45°)}{cos2α}$=$\frac{-\frac{\sqrt{2}}{2}(cosα+sinα)×\frac{\sqrt{2}}{2}(cosα-sinα)}{cos2α}$=$-\frac{1}{2}×\frac{co{s}^{2}α-si{n}^{2}α}{cos2α}=-\frac{1}{2}$.
故答案为:$-\frac{1}{2}$.
点评 本题主要考察了同角三角函数关系式和万能公式的应用,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α⊥β,l∥α,则l⊥β | B. | 若α⊥β,l⊥a,则l∥β | C. | 若l∥α,l∥β,则α∥β | D. | 若l∥α,l⊥β,则α⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com