【题目】已知椭圆
(
)与抛物线
(
)共交点
,抛物线上的点
到
轴的距离等于
,且椭圆与抛物线的交点
满足
.
(1)求抛物线的方程和椭圆的方程;
(2)国抛物线上的点
做抛物线的切线
交椭圆于
两点,设线段
的中点为
,求
的取值范围.
【答案】(1)
(2)![]()
【解析】
(1)根据题意及抛物线的定义可得
是抛物线
的准线,从而得到
,解得
后可得方程;由题意得点
的坐标为
,然后根据椭圆的定义得到
,又
,故得
,于是可得椭圆的方程.(2)由直线
与抛物线相切并结合判别式可得
;再根据直线与椭圆相交可得
,又
,可得
.根据根与系数的关系得到
.又
,故得
,于是得到
的取值范围是
.
(1)∵抛物线上的点
到
轴的距离等于
,
∴点
到直线
的距离等于点
到交点
的距离,
∴直线
是抛物线
的准线,
∴
.
解得
,
∴抛物线的方程为
.
由题意得椭圆的右焦点
,左焦点
,
由
得
,
∴
,
又
,
可得点
的坐标为
.
由椭圆的定义得
,
,
又
,
∴
,
∴椭圆的方程为
.
(2)显然
,
,
由
,消去
整理得
,
由题意知
,解得
.
由
,消去
整理得
,
即
,
其中
,
∴
,
又
,得
,
解得
.
设
,
,
则
,
则
.
又
,
∴
.
∴
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由
得
参照附表,得到的正确结论是( )
爱好 | 不爱好 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
| 0.010 | 0.005 | 0.001 |
| 6.635 | 7.879 | 10.828 |
A.有99.5%以上的把握认为“爱好该项运动与性别有关”
B.有99.5%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第
条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以
元罚款,记
分的行政处罚.如表是本市一主干路段监控设备所抓拍的
个月内,机动车驾驶员不“礼让斑马线”行为统计数据:
月份 |
|
|
|
|
|
违章驾驶员人数 |
|
|
|
|
|
(Ⅰ)请利用所给数据求违章人数
与月份
之间的回归直线方程
;
(Ⅱ)预测该路段
月份的不“礼让斑马线”违章驾驶员人数.
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一古寺有一池储满了水,现一小和尚每日,按照池中所剩水一定的百分率打走一些水,且每次打水的百分率一样.10日过去,池中水恰为满池水的一半.
(1)求此百分率.(保留指数形式)
(2)若某日小和尚打完水,池中水为满池水的
倍,小和尚已打水几日?
(3)若某日小和尚打完水,池中水为满池水的
倍,若古寺要求池中水不少于满池水的
,则小和尚还能再打几日水?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家具厂生产一种办公桌,每张办公桌的成本为100元,出厂单价为160元,该厂为鼓励销售商多订购,决定一次订购量超过100张时,每超过一张,这批订购的全部办公桌出厂单价降低1元.根据市场调查,销售商一次订购量不会超过160张.
(1)设一次订购量为
张,办公桌的实际出厂单价为
元,求
关于
的函数关系式
;
(2)当一次性订购量
为多少时,该家具厂这次销售办公桌所获得的利润
最大?其最大利润是多少元?(该家具厂出售一张办公桌的利润=实际出厂单价-成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a-
.
(1)求f(0);
(2)探究f(x)的单调性,并证明你的结论;
(3)若f(x)为奇函数,求满足f(ax)<f(2)的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com