分析 由题设中所给的三个不等式归纳出它们的共性:左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方,右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,得出第n个不等式
解答 解:由已知中的不等式
1+$\frac{1}{2^2}<\frac{3}{2}$,
1+$\frac{1}{2^2}+\frac{1}{3^3}<\frac{5}{3}$,
1+$\frac{1}{2^2}+\frac{1}{3^3}+\frac{1}{4^2}<\frac{7}{4}$,
1+$\frac{1}{2^2}+\frac{1}{3^3}+\frac{1}{4^2}+\frac{1}{5^2}<\frac{9}{5}$
…
得出左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方
右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,
故可以归纳出第n个不等式是1+$\frac{1}{{2}^{2}}$+…+$\frac{1}{(n+1)^{2}}$<$\frac{2n+1}{n+1}$,(n≥2),
故答案为:1+$\frac{1}{{2}^{2}}$+…+$\frac{1}{(n+1)^{2}}$<$\frac{2n+1}{n+1}$
点评 本题考查归纳推理,解题的关键是根据所给的三个不等式得出它们的共性,由此得出通式.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$×42015+$\frac{1}{3}$ | B. | $\frac{4}{3}$×42015-$\frac{1}{3}$ | C. | $\frac{4}{3}$×42016+$\frac{1}{3}$ | D. | $\frac{4}{3}$×42016+$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{6}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com