精英家教网 > 高中数学 > 题目详情
(2012•商丘三模)已知函数f(x)=
3
sinωx+cosωx(ω>0)的最小正周期为4π,则对该函数的图象与性质判断错误的是(  )
分析:利用两角和的正弦公式化简函数f(x)的解析式为2sin(ωx+
π
6
),由周期为4π,求得ω的值,可得f(x)=
2sin(
1
2
x+
π
6
).由于当x=-
π
3
时,函数f(x)=0,可得函数的图象关于点(-
π
3
,0)对称.
解答:解:∵函数f(x)=
3
sinωx+cosωx=2(
3
2
sinωx
+
1
2
cosωx
)=2sin(ωx+
π
6
),
故此函数的周期为
ω
=4π,∴ω=
1
2

故函数f(x)=2sin(
1
2
x+
π
6
).
由于当x=-
π
3
时,函数f(x)=2sin(
1
2
x+
π
6
)=0,故该函数的图象关于点(-
π
3
,0)对称,
故选A.
点评:本题主要考查两角和的正弦公式,正弦函数的对称性和周期性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•商丘三模)已知等比数列{an}的前n项和Sn=2n+m(m∈R).
(Ⅰ)求m的值及{an}的通项公式;
(Ⅱ)设bn=2log2an-13,数列{bn}的前n项和为Tn,求使Tn最小时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知不等式2|x-3|+|x-4|<2a.
(Ⅰ)若a=1,求不等式的解集;
(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
3
,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.
(Ⅰ)求证:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱锥B-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知实数x,y满足
x-y≤1
x≥
1
2
2x+y≤4
,则x-3y的最大值为
2
2

查看答案和解析>>

同步练习册答案