精英家教网 > 高中数学 > 题目详情
如图,四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD=
2
,AB=AC,CE与平面ABE所成的角为45°.
(1)证明:AD⊥CE;
(2)求二面角A-CE-B的正切值.
考点:二面角的平面角及求法,直线与平面垂直的性质
专题:空间角
分析:(1)根据线面垂直的性质,即可证明:AD⊥CE;
(2)求出二面角的平面角,即可求二面角A-CE-B的正切值.
解答: 证明:(1)如图,取BC的中点H,连接HD交CE于点P,
连接 AH、AP.
∵AB=AC,
∴AH⊥BC
又∵平面ABC⊥平面BCDE,
∴AH⊥平面BCDE,
∴AH⊥CE,
又∵
HC
CD
=
CD
DE
=
1
2

∴Rt△HCD∽Rt△CDE
∴∠CDH=∠CED,
∴HD⊥CE
∴CE⊥平面AHD
∴AD⊥CE.
(2)由(1)CE⊥平面AHD,∴AP⊥CE,
又HD⊥CE
∴∠APH就是二面角A-CE-B 的平面角,
过点C作CG⊥AB,垂足为G,连接CG、EG.
∵BE⊥BC,且BE⊥AH,
∴BE⊥平面ABC,
∴BE⊥CG,
∴CG⊥平面ABE,
∴∠CEG就是CE与平面ABE所成的角,即∠CEG=45°,
又CE=
6
,∴CG=EG=
3

又BC=2,∴∠ABC=60°,
∴AB=BC=AC=2,
∴AH=
3

又HD=
3
,∴HP=
CH2
HD
=
3
3

∴tan∠APH=
AH
HP
=3.
点评:本题主要考查空间直线垂直的证明,以及二面角大小的求解,考查学生的运算推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设奇函数f(x)定义在(-∞,0)∪(0,+∞)上,f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式
3f(x)-2f(-x)
5x
<0的解集为(  )
A、(-1,0)∪(1,+∞)
B、(-∞,-1)∪(0,1)
C、(-∞,-1)∪(1,+∞)
D、(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=2-|x|为偶函数;
②函数y=1是周期函数;
③函数f(x)=2x-x2的零点有2个;
④函数g(x)=|log2x|-(
1
2
x在(0,+∞)上恰有两个零点x1,x2且x1•x2<1.
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

随机变量ξ的分布列如下:
ξ 0 1 2
P a b c
其中a,b,c成等差数列,则函数f(x)=x2+2x+ξ有且只有一个零点的概率为(  )
A、
1
6
B、
1
3
C、
1
2
D、
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

α、β是两个不同的平面,m、n是平面α及β之外的两条不同直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

有5个不同的球,5个不同的盒子,现要把球全部放入盒内.
(1)共有几种放法?
(2)恰有一个盒子不放球,共有几种放法?
(3)恰有两个盒子不放球,共有几种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为等差数列{an}的前n项和,满足S4=14,S10-S7=30.求an及Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设向量
AB
=
a
,向量
AC
=
b

(1)证明A、O、E三点在同一条直线上,且
AO
OE
=
BO
OF
=
CO
OD
=2;
(2)用
a
b
表示
AO

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x3+3tx2-6t2x+t-1(x∈R),其中t∈R.
(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当t≠0时,求f(x)的单调区间;
(Ⅲ)若函数f(x)在区间(0,1)内存在零点,求实数t的取值范围.

查看答案和解析>>

同步练习册答案