精英家教网 > 高中数学 > 题目详情
14.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-σ<X≤μ+σ)=0.6826,若μ=4,σ=1,则P(5<X≤6)=0.1359.

分析 根据变量符合正态分布,和所给的μ和σ的值,根据3σ原则,得到P(2<X≤6)=0.9544,P(3<X≤5)=0.6826,两个式子相减,根据对称性得到结果.

解答 解:∵随机变量X服从正态分布N(μ,σ2),
P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-σ<X≤μ+σ)=0.6826,μ=4,σ=1,
∴P(2<X≤6)=0.9544,P(3<X≤5)=0.6826,
∴P(2<X≤6-P(3<X≤5)=0.9544-0.6826=0.2718,
∴P(5<X<6)=$\frac{1}{2}$×0.2718=0.1359.
故答案为:0.1395.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.定义在R上的偶函数满足f($\frac{3}{2}$+x)=f($\frac{3}{2}$-x),且f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+…+f(2016)的值为(  )
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)判断直线l与曲线C的位置关系并说明理由;
(2)若直线l与抛物线x2=4y相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个总体中有60个个体,随机编号为0,1,2,…59,依编号顺序平均分成6个小组,组号依次为1,2,3,…6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是(  )
A.33B.43C.53D.54

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={0,1,2,3},B={x|(x+1)(x-2)<0},则A∩B=(  )
A.{0,2}B.{1,0}C.{0,1,2,3}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将一枚均匀硬币随机投掷4次,恰好出现2次正面向上的概率为(  )
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.口袋中装有2个白球和n(n≥2,n∈N*)个红球,每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.
(Ⅰ)用含n的代数式表示1次摸球中奖的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;
(Ⅲ)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.非齐次线性方程组AX=B的解向量是ξ1,ξ2,…ξt,若k1ξ1+k2ξ2+…+ktξt也是AX=B的解,则k1+k2+…+kt=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:f(x)=$\sqrt{{x}^{2}+2}$,正项数列{an}中,a1=2,an+1=f(an),数列{bn}的前n项和为Sn,且满足an2=2n+1bn
(1)求{bn}的通项公式
(2)若不等式设2n•Sn>m•2n-2an2对?n∈N+恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案