精英家教网 > 高中数学 > 题目详情
3.函数y=-2sinx+1,(-$\frac{π}{6}$≤x≤$\frac{2π}{3}$)的值域是[-1,2].

分析 由x的范围求出sinx的范围,进一步得到函数y=-2sinx+1(-$\frac{π}{6}$≤x≤$\frac{2π}{3}$)的值域.

解答 解:∵-$\frac{π}{6}$≤x≤$\frac{2π}{3}$,∴-$\frac{1}{2}$≤sinx≤1,
则-1≤-2sinx+1≤2.
∴函数y=-2sinx+1(-$\frac{π}{6}$≤x≤$\frac{2π}{3}$)的值域是[-1,2].
故答案为:[-1,2].

点评 本题考查三角函数值的求法,考查了正弦型函数的值域,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设数列{an}满足an=$\left\{\begin{array}{l}1,(n=1)\\ 1+\frac{1}{{{a_{n-1}}}},(n>1)\end{array}$,则a5=(  )
A.$\frac{8}{5}$B.$\frac{5}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O为坐标原点,向量$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,$\overrightarrow{OC}$=$\overrightarrow c$且点A、B、C在曲线x2+y2=1上运动,若$\overrightarrow a$⊥$\overrightarrow b$,则($\overrightarrow a$-$\overrightarrow c$)•($\overrightarrow b$-$\overrightarrow c$)的最小值为(  )
A.-1B.-2C.1-$\sqrt{2}$D.$\sqrt{2}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=loga(ax2-x+3)(0<a<1)在[2,4]上是增函数,则实数a的取值范围是$\frac{1}{16}<a≤\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1,过它的焦点且垂直于x轴上的弦长是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A、B、C对边的边长分别是a,b,c,已知c=2,4cos2$\frac{C}{2}$-cosC=$\frac{5}{2}$.
(1)若ab=4,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数g(x)=f(x)+2x,x∈R为奇函数.
(1)判断函数f(x)的奇偶性;
(2)若x>0时,f(x)=log3x,求函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线l,m和平面β,若l⊥m,l⊥β,则m与β的位置关系是m?β或m∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在正方体ABCD-A1B1C1D1中,异面直线AD1与BD所成的角为600;若AB的中点为M,DD1的中点为N,则异面直线B1M与CN所成的角为900

查看答案和解析>>

同步练习册答案