精英家教网 > 高中数学 > 题目详情

(12分)已知数列{an},{bn}是各项均为正数的等比数列,设cn=(n∈N*).

(1)数列{cn}是否为等比数列?证明你的结论;

(2)设数列|ln an|,|1n bn|的前n项和分别为Sn,Tn. 若a1=2, . 求数列{cn}的前n项和.

 

【答案】

 

(1)略

(2)4+42+…+4n=(4n-1)

【解析】(1){cn}是等比数列.(2分)

证明:设{an}的公比为q1(q1>0),{bn}的公比为q2(q2>0),则··≠0,故{cn}为等比数列.(5分)

(2)数列{1n an}和{1n bn}分别是公差为1n q1和1n q2的等差数列. 由条件得=,即.(7分)

故对n=1,2,…,(2lnq1-1nq2)n2+(4lna1-1nq1-2lnb1+1nq2)n+(2lna1-1nq1)=0.

于是

将a1=2代入得q1=4, q2=16, b1=8.(10分)

从而有cn==4n. 所以数列{cn}的前n项和为4+42+…+4n=(4n-1).(12分)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案