精英家教网 > 高中数学 > 题目详情
(1)若抛物线的焦点是椭圆
x2
三4
+
2
1三
=1
的左顶点,求此抛物线的标准方程;
(2)若双曲线与椭圆
x2
三4
+
2
1三
=1
有相同的焦点,与双曲线
2
2
-
x2
=1
有相同渐近线,求此双曲线的标准方程.
(I)椭圆
ed
64
+
d
少6
=少
的左顶点为(-8,0),
∴抛物线的焦点为(-8,0),(d分)
设抛物线方程为地d=-dpe(p>0),
-
p
d
=-8,p=少6
,(4分)
∴所求抛物线的标准方程为地d=-3de.(6分)
(II)椭圆
ed
64
+
d
少6
=少
的焦点为F(-4
3
,0),Fd(4
3
,0)
,(8分)
双曲线
d
d
-
ed
6
=少
的渐近线方程为地=±
3
3
e
,(少0分)
设所求双曲线方程为
ed
ad
-
d
bd
=少(a>0,b>0)

由题意知:
ad+bd=48
b
a
=
3
3
(少d分)
ad=36
bd=少d

∴所求双曲线方程为
ed
36
-
d
少d
=少
.(少4分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)若抛物线的焦点是椭圆
x2
64
+
y2
16
=1
的左顶点,求此抛物线的标准方程;
(2)若双曲线与椭圆
x2
64
+
y2
16
=1
有相同的焦点,与双曲线
y2
2
-
x2
6
=1
有相同渐近线,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)已知椭圆
x2
4
+
y2
b2
=1(0<b<2)的离心率等于
3
2
,抛物线x2=2py (p>0).
(1)若抛物线的焦点F在椭圆的顶点上,求椭圆和抛物线的方程;
(2)若抛物线的焦点F为(0,
1
2
),在抛物线上是否存在点P,使得过点P的切线与椭圆相交于A,B两点,且满足OA⊥OB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年大连24中) (12分)    如图,已知直线的右焦点F,且交椭圆CAB两点,点AFB在直线上的射影依次为点DKE.

   (1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;

   (2)对于(1)中的椭圆C,若直线Ly轴于点M,且,当m变化时,求的值;

   (3)连接AEBD,试探索当m变化时,直线AEBD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线的右焦点F,且交椭圆CAB两点,点AFB在直线上的射影依次为点DKE.

   (1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程; (2)对于(1)中的椭圆C,若直线Ly轴于点M,且,当m变化时,求的值;  (3)连接AEBD,试探索当m变化时,直线AEBD是否相交于一定点N?若交于定点N,请求出N点的坐标并给予证明;否则说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省威海市高三第一次模拟考试理科数学试卷 题型:解答题

(本小题满分12分)已知椭圆(0<b<2)的离心率等于抛物线(p>0).

(1)若抛物线的焦点F在椭圆的顶点上,求椭圆和抛物线的方程;

(II)若抛物线的焦点F为,在抛物线上是否存在点P,使得过点P的切线与椭圆相交于A,B两点,且满足?若存在,求出点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案