精英家教网 > 高中数学 > 题目详情
如图,已知四边形均为正方形,平面平面.

(1)求证:平面
(2)求二面角的大小.
(1)详见解析;(2).

试题分析:(1)要证直线与平面垂直,只须证明这条直线与平面内的两条相交直线垂直或证明这条直线是两垂直平面中一个平面内的一条直线,且这条直线垂直于这两个平面的交线即可.本题属于后者,由平面平面且交线为,而平面,所以问题得证;(2)解决空间角最有效的工具是向量法,先以点为坐标原点,利用已有的垂直关系建立空间直角坐标系,为计算的方便,不妨设正方形的边长为1,然后标出有效点与有效向量的坐标,易知平面的法向量为,再利用待定系数法求出另一平面的法向量,接着计算出这两个法向量夹角的余弦值,根据二面角的图形与计算出的余弦值,确定二面角的大小即可.
试题解析:(1)因为平面平面,且平面平面
又因为四边形为正方形,所以
因为平面,所以平面       4分
(2)以为坐标原点,如图建立空间直角坐标系


所以平面的法向量为   5分
设平面的法向量为
因为

,则       6分
因为
所以二面角的大小为       8分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是边长为2的正方形,侧面底面,且为等腰直角三角形,分别为的中点.

(1)求证://平面 ;
(2)若线段中点为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是圆的直径,垂直圆所在的平面,是圆上的点.

(1)求证:平面
(2)设的中点,的重心,求证://平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题“如果xyyz,则xz”是假命题,那么字母xyz在空间所表示的几何图形可能是(  )
A.全是直线 B.全是平面
C.xz是直线,y是平面 D.xy是平面,z是直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,长方体中,是边长为的正方形,与平面所成的角为,则棱的长为_______;二面角的大小为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,已知点是正方体的棱上的一个动点,设异面直线所成的角为,则的最小值是                   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面,给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
正确命题的个数是(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

四棱锥P-ABCD中,底面ABCD是平行四边形,,,若平面BDE,则的值为 (   )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和平面,下列推论中错误的是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案