精英家教网 > 高中数学 > 题目详情
14.已知函数y=f(x)=$\frac{lnx}{x}$.
(1)求y=f(x)的最大值;
(2)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值.

分析 (1)令导函数为0求出根,判断根左右两边的导函数符号,判断出函数的单调性,求出函数的最值.
(2)利用(1)的结论,判断出函数的最大值在e处取得;最小值在端点处取得;通过对a的分类讨论比较出两个端点值的大小,求出最小值.

解答 解:(1)∵f(x)=$\frac{lnx}{x}$,∴f′(x)=$\frac{1-lnx}{{x}^{2}}$,
令f′(x)=0得x=e.
∵当x∈(0,e)时,f′(x)>0,f(x)在(0,e)上为增函数,
当x∈(e,+∞)时,f′(x)<0,则在(e,+∞)上为减函数,
∴fmax(x)=f(e)=$\frac{1}{e}$.
(2)∵a>0,由(1)知:
F(x)在(0,e)上单调递增,在(e,+∞)上单调递减.
∴F(x)在[a,2a]上的最小值f(x)min=min{F(a),F(2a)},
∵F(a)-F(2a)=$\frac{1}{2}$ln$\frac{a}{2}$,
∴当0<a≤2时,F(a)-F(2a)≤0,fmin(x)=F(a)=lna.
当a>2时,F(a)-F(2a)>0,f(x)min=f(2a)=$\frac{1}{2}$ln2a.

点评 本题考查导数知识的运用,考查函数的单调性与导函数符号的关系、利用导数求函数的最值、分类讨论的数学思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知集合A{x|$\frac{2-x}{3+x}$≥0},B={x|x2-2x-3<0},C={x|x2-(2a+1)x+a(a+1)<0}.
(Ⅰ)求集合A,B及A∪B;
(Ⅱ)若C⊆(A∩B),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={1,a,b},B={a,a2,ab},若集合A=B,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在正三棱柱ABC-A1B1C1中,若AB=BB1,D是CC1中点,则CA1与BD所成角的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在500名患者身上试验某种血清治疗SARS的作用,与另外500名未用血清的患者进行比较研究,结果如表:
治疗情况
使用血清情况
治愈未治愈总计
用血清治疗254246500
未用血清治疗223277500
总计4775231 000
问该种血清能否起到治疗SARS的作用?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在R上的奇函数,且f(x+$\frac{3}{2}$)=-f(x),当x∈(-2,0)时f(x)=2x,则f(2014)+f(2015)+f(2016)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.PA垂直于以AB为直径的圆所在平面,C为圆周上除A、B外的任意一点,下列不成立的是(  )
A.PC⊥CBB.BC⊥平面PAC
C.AC⊥PBD.PB与平面PAC的夹角是∠BPC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点作(3,2)圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为(  )
A.2x+2y-3=0B.x+2y-3=0C.2x+y-3=0D.2x+2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.用描述法表示表示不等式4x-5<3的解集{x|x<2}.

查看答案和解析>>

同步练习册答案