分析 (Ⅰ)根据题意化简求出集合A,集合B.根据集合的基本运算即可求A∪B,
(Ⅱ)先求出A∩B,在根据C⊆(A∩B),建立条件关系即可求实数a的取值范围.
解答 解:(Ⅰ)集合A{x|$\frac{2-x}{3+x}$≥0},B={x|x2-2x-3<0},
C={x|x2-(2a+1)x+a(a+1)<0}.
∵$\frac{2-x}{3+x}≥0$,即(2-x)(3+x)≥0,
解得:-3<x≤2,
∴集合A={x|-3<x≤2}:
又∵x2-2x-3<0,
解得:-1<x<3,
∴集合B={x|-1<x<3}:
那么:A∪B={x|-3<x<3}.
(Ⅱ) 由(Ⅰ)可得集合A={x|-3<x≤2}:集合B={x|-1<x<3}:
那么:A∩B={x|-1<x≤2}.
∵x2-(2a+1)x+a(a+1)<0
∴(x-a)(x-a-1)<0.
∴集合C={x|a<x<a+1}
∵C⊆(A∩B),
∴需满足$\left\{\begin{array}{l}{a≤-1}\\{a+1≤2}\end{array}\right.$,
解得:-1≤a≤1.
所以实数a的取值范围是[-1,1].
点评 本题主要考查了不等式的计算能力和集合的基本运算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞] | B. | (0,1) | C. | [-9,+∞) | D. | [-9,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com