精英家教网 > 高中数学 > 题目详情
6.函数f(x)对任意x∈R,满足f(x)=f(2-x).如果方程f(x)=0恰有2016个实根,则所有这些实根之和为(  )
A.0B.2016C.4032D.8064

分析 由f(x)=f(2-x),可得函数y=f(x)关于直线x=1对称,依题意可求得方程f(x)=0的2016个实根之和.

解答 解:∵f(x)=f(2-x),
∴函数y=f(x)关于直线x=1对称,又方程f(x)=0恰有2016个实根,
设这2016个根从小到大依次为x1、x2、…、x2016
则x1+x2016=2,
x2+x2015=2,

x1008+x1009=2,
∴所有这些实根之和为1008×2=2016.
故选:B.

点评 本题考查抽象函数及其性质,着重考查函数的对称性的应用,求得函数y=f(x)关于直线x=1对称是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}(3a-1)x+4a(x≤1)\\{log_a}x(x>1)\end{array}$是R上的单调递减函数,则实数a的取值范围为(  )
A.(0,1)B.$(0,\frac{1}{3})$C.$[\frac{1}{7},\frac{1}{3})$D.$[\frac{1}{7},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={1,2,3},B={3,4,5},则A∩B={3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=Asinωx(A>0,ω>0)在[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函数,则ω的最大值是(  )
A.1B.2C.$\frac{3}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算下列各式的值:
(1)log4$\sqrt{8}$+lg50+lg2+5${\;}^{lo{g}_{5}3}$+(-9.8)0
(2)($\frac{27}{64}$)${\;}^{\frac{2}{3}}$-($\frac{25}{4}$)0.5+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列四个命题:
(1)函数f(x)在x>0时是增函数,x<0时也是增函数,所以f(x)是增函数;
(2)若m=loga2,n=logb2且m>n,则a<b;
(3)函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是a≤-3;
(4)y=log${\;}_{\frac{1}{2}}}$(x2+x-2)的减区间为(1,+∞).
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x+$\frac{m}{x}$(x>0,m>0)和函数g(x)=a|x-b|+c(x∈R,a>0,b>0).问:
(1)证明:f(x)在($\sqrt{m}$,+∞)上是增函数;
(2)把函数g1(x)=|x|和g2(x)=|x-1|写成分段函数的形式,并画出它们的图象,总结出g2(x)的图象是如何由g1(x)的图象得到的.请利用上面你的结论说明:g(x)的图象关于x=b对称;
(3)当m=1,b=2,c=0时,若f(x)>g(x)对于任意的x>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题为真命题的是(  )
A.命题“若x>y,则x>|y|”的逆命题B.命题“若x2≤1,则x≤1”的否命题
C.命题“若x=1,则x2-x=0”的否命题D.命题“若$a>b,则\frac{1}{a}<\frac{1}{b}$”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C的对边分别为a,b,c,A=60°,a=3.
(1)若b=2,求cosB;
(2)求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案