分析 (1)由已知利用正弦定理可求sinB的值,利用大边对大角可求B为锐角,利用同角三角函数基本关系式即可求得cosB的值.
(2)由已知及余弦定理,基本不等式可求bc≤9,利用三角形面积公式可求△ABC的面积的最大值.
解答 (本题满分为12分)
解:(1)∵$\frac{a}{sinA}=\frac{b}{sinB}$,∴$sinB=\frac{bsinA}{a}$=$\frac{2×\frac{\sqrt{3}}{2}}{3}$,可得,$sinB=\frac{{\sqrt{3}}}{3}$…(3分)
又∵a>b,
∴A>B,可得B为锐角,
∴$cosB=\frac{{\sqrt{6}}}{3}$.…(6分)
(2)${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{4}bc$,
∵$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}$,
∴bc=b2+c2-9≥2bc-9,…(9分)
∴得bc≤9,当且仅当b=c时等号成立,
∴故S△ABC=$\frac{1}{2}$bcsinA≤$\frac{1}{2}×$9×$\frac{\sqrt{3}}{2}$=$\frac{{9\sqrt{3}}}{4}$,即△ABC的面积的最大值为$\frac{{9\sqrt{3}}}{4}$.…(12分)
点评 本题主要考查了正弦定理,大边对大角,同角三角函数基本关系式,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2016 | C. | 4032 | D. | 8064 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,-2) | B. | $(-\frac{1}{2},-\frac{1}{3})$ | C. | (-∞,-3)∪(-2,+∞) | D. | $(-∞,-\frac{1}{2})∪(-\frac{1}{3},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{1}{4},\frac{3}{2}]$ | B. | $[\frac{1}{4},\frac{3}{7}]$ | C. | $[\frac{3}{7},\frac{3}{2}]$ | D. | $(0,\frac{1}{4}]∪[\frac{3}{2},+∞]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$\lim_{n→∞}a_n^2={A^2}$,则$\underset{lim}{n→∞}$an=A | B. | 若an>0,$\lim_{n→∞}{a_n}=A$,则A>0 | ||
| C. | 若$\lim_{n→∞}{a_n}=A$,则$\lim_{n→∞}a_n^2={A^2}$ | D. | 若$\underset{lim}{n→∞}$an=A,则$\lim_{n→∞}na_n^{\;}=n{A^{\;}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com