精英家教网 > 高中数学 > 题目详情
4.已知tanα=3,则tan(α+$\frac{π}{4}}$)的值是(  )
A.1B.$\frac{1}{2}$C.2D.-2

分析 直接利用两角和的正切公式,求得tan(α+$\frac{π}{4}}$)的值.

解答 解:∵tanα=3,则tan(α+$\frac{π}{4}}$)=$\frac{tanα+1}{1-tanα}$=-2,
故选:D.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=Asinωx(A>0,ω>0)在[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函数,则ω的最大值是(  )
A.1B.2C.$\frac{3}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题为真命题的是(  )
A.命题“若x>y,则x>|y|”的逆命题B.命题“若x2≤1,则x≤1”的否命题
C.命题“若x=1,则x2-x=0”的否命题D.命题“若$a>b,则\frac{1}{a}<\frac{1}{b}$”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}的前n项和为Sn,a1=7,对任意的n∈N*都有an+1=-2+an,则使Sn最大的n的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,且满足a1=2,an+1=2Sn+1,则数列{an}的通项公式为${a_n}=\left\{\begin{array}{l}2,n=1\\ 5•{3^{n-2}},n≥2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,根据下列条件解三角形,则其中有两个解的是(  )
A.b=10,A=45°,B=60°B.a=60,c=48,B=120°
C.a=7,b=5,A=75°D.a=14,b=16,A=45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C的对边分别为a,b,c,A=60°,a=3.
(1)若b=2,求cosB;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设△ABC的内角A,B,C所对的边分别为a,b,c,且 acosC+$\frac{1}{2}$c=b.
(1)求角A的大小;
(2)若a=1,求周长P的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,则实数a的值为(  )
A.2或-1B.-1C.2D.-2

查看答案和解析>>

同步练习册答案