精英家教网 > 高中数学 > 题目详情
9.在△ABC中,根据下列条件解三角形,则其中有两个解的是(  )
A.b=10,A=45°,B=60°B.a=60,c=48,B=120°
C.a=7,b=5,A=75°D.a=14,b=16,A=45°

分析 由条件利用正弦定理、余弦定理以及大边对大角,判断△ABC解的个数.

解答 解:若b=10,A=45°,B=60°,则由正弦定理可得$\frac{a}{sin45°}$=$\frac{10}{sin60°}$,求得a=$\frac{10\sqrt{6}}{3}$,故△ABC有一解;
若a=60,c=48,B=120°,则由余弦定理可得b2=a2+c2-2ac•cosB=8784,求得b只有一解,故△ABC有一解;
若a=7,b=5,A=75°,则由正弦定理可得$\frac{7}{sin75°}$=$\frac{5}{sinB}$,求得sinB=$\frac{28}{\sqrt{6}+\sqrt{2}}$,
再根据b<a,可得B为锐角,故角B只有一个,故△ABC有一解;
若a=14,b=16,A=45°,则由正弦定理可得 $\frac{14}{sin45°}$=$\frac{16}{sinB}$,求得sinB=$\frac{4\sqrt{2}}{7}$,
再根据b>a,可得B>A,∴B可能是锐角也可能是钝角,即角B有2个值,故△ABC有两解,
故选:D.

点评 本题主要考查正弦定理、余弦定理的应用,大边对大角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.近年来青海玉树多次发生地震,给当地居民带来了不少灾难,其中以2010年4月1号的7.1级地震和2016年10月17号的6.2级地震带来的灾难较大;早在20世纪30年代,美国加州理工学院的地震物理学家里克特就制定了我们常说的里氏震级M,其计算公式为M=lgA-lgA0(其中A是被测地震的最大振幅,A0是“标准地震”的振幅),那么7.1级地震的最大振幅是6.2级地震的最大振幅的100.9倍.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=(x3-x)e|x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若数列{an2}是等差数列,则称数列{an}为“等方差数列”,给出以下判断:
①常数列是等方差数列;
②若数列{an}是等方差数列,则数列{an2}是等差数列;
③若数列{an}是等方差数列,则数列{an2}是等方差数列;
④若数列{an}是等方差数列,则数列{a2n}也是等方差数列,
其中正确的序号有(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知tanα=3,则tan(α+$\frac{π}{4}}$)的值是(  )
A.1B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设数列{an}的前n项积为Tn,且Tn=2-2an(n∈N*),则a2016=$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\frac{{x}^{2}}{x-3}$(x>3)的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.无穷等比数列{an}的通项公式为an=3×(-$\frac{1}{2}$)n-1,则其所有项的和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在等差数列{an}中,已知a3=7,a6=16,将此等差数列的各项排成如图所示的三角形数阵,则此数阵中,第10行从左到右的第5个数是148.

查看答案和解析>>

同步练习册答案