| A. | $[\frac{1}{4},\frac{3}{2}]$ | B. | $[\frac{1}{4},\frac{3}{7}]$ | C. | $[\frac{3}{7},\frac{3}{2}]$ | D. | $(0,\frac{1}{4}]∪[\frac{3}{2},+∞]$ |
分析 作出不等式组对应的平面区域,根据$\frac{y}{x}$的几何意义是区域内的点到原点的斜率,利用数形结合进行求解即可.
解答 解:作出不等式组对应的平面区域如图:![]()
$\frac{y}{x}$的几何意义是区域内的点到原点的斜率,
由图象知OA的斜率最大,OC的斜率最小,
由$\left\{\begin{array}{l}{2y-3=0}\\{x+2y-4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=\frac{3}{2}}\end{array}\right.$,即A(1,$\frac{3}{2}$),
由$\left\{\begin{array}{l}{x-y-2=0}\\{x+2y-4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{8}{3}}\\{y=\frac{2}{3}}\end{array}\right.$,即C($\frac{8}{3}$,$\frac{2}{3}$),
则OA的斜率k=$\frac{3}{2}$,OC的斜率k=$\frac{\frac{2}{3}}{\frac{8}{3}}$=$\frac{1}{4}$,
即$\frac{y}{x}$的取值范围是[$\frac{1}{4}$,$\frac{3}{2}$],
故选:A.
点评 本题主要考查线性规划的应用,利用$\frac{y}{x}$的几何意义是区域内的点到原点的斜率是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2) | B. | (1,$\sqrt{2}$) | C. | (1,2) | D. | (0,$\sqrt{2}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com