精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (为自然对数的底数).

(1)求函数的极值;

(2)当时,若直线与曲线没有公共点,求的最大值.

【答案】(1)见解析(2)的最大值为1.

【解析】分析:(1)先求导,再对a分类讨论,求函数的单调性得到函数的极值.(2)先把问题转化为关于的方程上没有实数解,再转化为方程化为没有实数解,得k的最大值.

详解:(1)

①当时, 上的增函数,所以函数无极值.

②当时,令,得.

.

所以上单调递减,在上单调递增,

处取得极小值,且小值为,无极大值.

综上,当时,函数无极小值;

处取得极小值,无极大值.

(2)当时, .

直线与曲线没有公共点,

等价于关于的方程上没有实数解,

即关于的方程上没有实数解.

①当时,方程可化为,在上没有实数解.

②当时,方程化为.

,则有

,得

变化时, 的变化情况如下表:

-1

-

0

+

时, ,同时当趋于时, 趋于

从而的取值范围为.

所以当时,方程无实数解,

解得的取值范围是.

综上,得的最大值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中混装着9个大小相同的球(编号不同),其中5只白球,4只红球,为了把红球与白球区分开来,采取逐只抽取检查,若恰好经过5次抽取检查,正好把所有白球和红球区分出来了,则这样的抽取方式共有__________种(用数字作答) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.

(1)全体排成一行,其中男生必须排在一起;

(2)全体排成一行,男、女各不相邻;

(3)全体排成一行,其中甲不在最左边,乙不在最右边;

(4)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点且离心率为

(I)求椭圆的方程;

(Ⅱ)过椭圆的右顶点做相互垂直的两条直线,分别交椭圆异于点),问直线是否通过定点?若过定点,求出定点坐标若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是(

A.0.09
B.0.20
C.0.25
D.0.45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:

组别

候车时间

人数

[0,5)

2

[5,10)

6

[10,15)

4

[15,20)

2

[20,25]

1

(Ⅰ)求这15名乘客的平均候车时间;
(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;
(Ⅲ)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两个不共线的非零向量.

1)设,那么当实数t为何值时,ABC三点共线;

2)若的夹角为60°,那么实数x为何值时的值最小?最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用五点法画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

1)请将上表数据补充完整;函数的解析式为 (直接写出结果即可);

2)根据表格中的数据作出一个周期的图象;

3)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

A

合计

B

(1)根据已知条件求出上面的列联表中的A和B;用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)为了研究心肺疾病是否与性别有关,请计算出统计量,并说明是否有的把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

同步练习册答案