£¨2013•³çÃ÷ÏضþÄ££©Ä³Ê¡»·±£Ñо¿Ëù¶ÔÊÐÖÐÐÄÿÌì»·¾³·ÅÉäÐÔÎÛȾÇé¿ö½øÐе÷²éÑо¿ºó£¬·¢ÏÖÒ»ÌìÖл·¾³×ۺϷÅÉäÐÔÎÛȾָÊýf£¨x£©Óëʱ¿Ìx£¨Ê±£© µÄ¹ØϵΪf£¨x£©=|
x
x2+1
-a|+2a+
2
3
£¬x¡Ê[0£¬24]£¬ÆäÖÐaÊÇÓëÆøÏóÓйصIJÎÊý£¬ÇÒa¡Ê[0£¬
1
2
]£®
£¨1£©Áît=
x
x2+1
£¬x¡Ê[0£¬24]£¬Ð´³ö¸Ãº¯ÊýµÄµ¥µ÷Çø¼ä£¬²¢Ñ¡ÔñÆäÖÐÒ»ÖÖÇéÐνøÐÐÖ¤Ã÷£»
£¨2£©ÈôÓÃÿÌìf£¨x£©µÄ×î´óÖµ×÷Ϊµ±ÌìµÄ×ۺϷÅÉäÐÔÎÛȾָÊý£¬²¢¼Ç×÷M£¨a£©£¬ÇóM£¨a£©£»
£¨3£©Ê¡Õþ¸®¹æ¶¨£¬Ã¿ÌìµÄ×ۺϷÅÉäÐÔÎÛȾָÊý²»µÃ³¬¹ý2£¬ÊÔÎÊÄ¿Ç°ÊÐÖÐÐĵÄ×ۺϷÅÉäÐÔÎÛȾָÊýM£¨a£©ÊÇ·ñ³¬±ê£¿
·ÖÎö£º£¨1£©µ¥µ÷µÝÔöÇø¼äΪ[0£¬1]£»µ¥µ÷µÝ¼õÇø¼äΪ[1£¬24]£¬ÀûÓõ¥µ÷ÐԵĶ¨Òå¿ÉÒÔÖ¤Ã÷£»
£¨2£©ÏÈÈ·¶¨tµÄÈ¡Öµ·¶Î§ÊÇ[0£¬
1
2
]£¬ÔÙ½øÐзÖÀàÌÖÂÛ£¬´Ó¶ø¿ÉµÃM£¨a£©µÄ½âÎöʽ£»
£¨3£©ÀûÓ÷ֶκ¯Êý£¬¿ÉµÃµ±
1
4
£¼a¡Ü
4
9
ʱ²»³¬±ê£¬´Ó¶ø¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º£¨1£©µ¥µ÷µÝÔöÇø¼äΪ[0£¬1]£»µ¥µ÷µÝ¼õÇø¼äΪ[1£¬24]£®
Ö¤Ã÷£ºÈÎÈ¡0¡Üx1£¼x2¡Ü1£¬t£¨x1£©-t£¨x2£©=
(x1-x2)(1-x1x2)
(1+x12)(1+x22)
£¬
¡ß0¡Üx1£¼x2¡Ü1£¬¡àx1-x2£¼0£¬1-x1x2£¾0£¬¡à
(x1-x2)(1-x1x2)
(1+x12)(1+x22)
£¼0£¬¡àt£¨x1£©-t£¨x2£©£¼0£®
ËùÒÔº¯Êýt£¨x£©ÔÚ[0£¬1]ÉÏΪÔöº¯Êý£®£¨Í¬Àí¿ÉÖ¤ÔÚÇø¼ä[1£¬24]µ¥µ÷µÝ¼õ£©
£¨2£©Óɺ¯ÊýµÄµ¥µ÷ÐÔÖªtmax£¨x£©=t£¨1£©=
1
2
£¬tmin£¨x£©=t£¨0£©=0£¬
¡àt=
x
x2+1
=
1
x+
1
x
¡Ê[0£¬
1
2
]
£¬¡àtµÄÈ¡Öµ·¶Î§ÊÇ[0£¬
1
2
]£®
µ±a¡Ê[0£¬
1
2
]ʱ£¬ÓÉÓÚf£¨x£©=|
x
x2+1
-a|+2a+
2
3
£¬Ôò¿É¼Çg£¨t£©=|t-a|+2a+
2
3

Ôòg£¨t£©=
-t+3a+
2
3
£¬0¡Üt¡Üa
t+a+
2
3
£¬a£¼t¡Ü
1
2

¡ßg£¨t£©ÔÚ[0£¬a]Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨a£¬
1
2
]Éϵ¥µ÷µÝÔö£¬
ÇÒg£¨0£©=3a+
2
3
£®g£¨
1
2
£©=a+
7
6

¡àg£¨0£©-g£¨
1
2
£©=2£¨a-
1
4
£©£®
¹ÊM£¨a£©=
a+
7
6
£¬0¡Üa¡Ü
1
4
3a+
2
3
£¬
1
4
£¼a¡Ü
1
2
£®
£¨3£©µ±0¡Üa¡Ü
1
4
ʱ£¬a+
7
6
¡Ü2
£¬¡àa¡Ü
5
6
£¬²»Âú×ãÌâÒâa¡Ê[0£¬
1
2
]£»
µ±
1
4
£¼a¡Ü
1
2
ʱ£¬3a+
2
3
¡Ü2
£¬¡àa¡Ü
4
9
£¬¡à
1
4
£¼a¡Ü
4
9
ʱ£¬Âú×ãÌâÒâa¡Ê[0£¬
1
2
]£®
¹Êµ±
1
4
£¼a¡Ü
4
9
ʱ²»³¬±ê£¬µ±0¡Üa¡Ü
1
4
ʱ³¬±ê£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˺¯ÊýÄ£Ð͵ÄÑ¡ÔñÓëÓ¦Óᢿ¼²éÇóº¯Êý½âÎöʽ¼°·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÓÚʵ¼ÊÓ¦ÓÃÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³çÃ÷ÏضþÄ££©Ä³ÈÕÓÃÆ·°´ÐÐÒµÖÊÁ¿±ê×¼·Ö³ÉÎå¸öµÈ¼¶£¬µÈ¼¶ÏµÊýXÒÀ´ÎΪ1£¬2£¬3£¬4£¬5£®ÏÖ´ÓÒ»Åú¸ÃÈÕÓÃÆ·ÖгéÈ¡200¼þ£¬¶ÔÆäµÈ¼¶ÏµÊý½øÐÐͳ¼Æ·ÖÎö£¬µÃµ½ÆµÂÊfµÄ·Ö²¼±íÈçÏ£º
X 1 2 3 4 5
f a 0.2 0.45 0.15 0.1
ÔòÔÚËù³éÈ¡µÄ200¼þÈÕÓÃÆ·ÖУ¬µÈ¼¶ÏµÊýX=1µÄ¼þÊýΪ
20
20
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³çÃ÷ÏضþÄ££©ÒÑÖªÊýÁÐ{an}ÊǸ÷Ïî¾ù²»Îª0µÄµÈ²îÊýÁУ¬¹«²îΪd£¬SnΪÆäÇ°nÏîºÍ£¬ÇÒÂú×ãan2=S2n-1£¬n¡ÊN*£®ÊýÁÐ{bn}Âú×ãbn=
1anan+1
£¬n¡ÊN*£¬TnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽanºÍÊýÁÐ{bn}µÄÇ°nÏîºÍTn£»
£¨2£©Èô¶ÔÈÎÒâµÄn¡ÊN*£¬²»µÈʽ¦ËTn£¼n+8•(-1)nºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓÐm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³çÃ÷ÏضþÄ££©É躯Êý f(x)=
2x      (x¡Ü0)
log2x (x£¾0)
£¬º¯Êýy=f[f£¨x£©]-1µÄÁãµã¸öÊýΪ
2
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³çÃ÷ÏضþÄ££©ÒÑÖªº¯Êýf£¨x£©=£¨cos2xcosx+sin2xsinx£©sinx£¬x¡ÊR£¬Ôòf£¨x£©ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³çÃ÷ÏضþÄ££©ÔÚÖ±½Ç¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏA=30¡ã£¬BC=1£¬DΪб±ßABµÄÖе㣬Ôò 
AB
CD
=
-1
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸