精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}x+1,x≥0\\{x^2},x<0\end{array}$,则f(f(-1))=(  )
A.4B.2C.1D.-2

分析 根据分段函数的表达式利用代入法进行求解即可.

解答 解:∵f(-1)=(-1)2=1,f(1)=1+1=2,
∴f(f(-1))=f(1)=2,
故选:B.

点评 本题主要考查函数值的计算,根据分段函数的表达式,利用直接法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
    日期11月1日11月2日11月3日11月4日11月5日
温差x(℃)    8   11  12   13   10
发芽数y(颗)   16   25  26   30   23
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=cos4x-sin4x+2的最小周期是(  )
A.πB.C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a<b<0,则下列不等式中不成立的是(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.$\frac{1}{a-b}$>$\frac{1}{a}$C.a3<b3D.|a|>|b|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知m,n∈R,则“m>n>0”是“$\frac{x^2}{m}+\frac{y^2}{n}$=1(m>0,n>0)为椭圆方程”的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线l:y=k(x+2)与抛物线C:y2=8x相交于A、B两点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{3}$C.2$\sqrt{2}$D.$\frac{2}{3}$$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\vec a$=${\vec e_1}$-$2{\vec e_2}$,$\vec b$=$3{\vec e_1}$+${\vec e_2}$,其中${\vec e_1}$=(1,0),${\vec e_2}$=(0,1),求:
(1)$\vec a•\vec b$;
(2)$\vec a$与$\vec b$夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x的一元二次方程ax2+2x-1=0有两个不相等正根的充要条件是(  )
A.a<-1B.-1<a<0C.a<0D.0<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中最小值为2的是(  )
A.y=log2x+logx2(0<x<1)B.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$
C.y=ex+e-xD.y=x+$\frac{1}{x}$

查看答案和解析>>

同步练习册答案