精英家教网 > 高中数学 > 题目详情
若直线y-kx-1=0(k∈R)与椭圆
x2
5
+
y2
m
=1
恒有公共点,则m的取值范围是
 
分析:整理直线方程可知直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,令x=0求得y2=m,要让点(0.1)在椭圆内或者椭圆上,则y≥1即是进而求得m的范围,最后注意到椭圆方程中m≠5,综合答案可得.
解答:解:整理直线方程得y-1=kx,
∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,
由于该点在y轴上,而该椭圆关于原点对称,
故只需要令x=0有
5y2=5m
得到y2=m
要让点(0.1)在椭圆内或者椭圆上,则y≥1即是
y2≥1
得到m≥1
∵椭圆方程中,m≠5
m的范围是[1,5)∪(5,+∞)
故答案为[1,5)∪(5,+∞)
点评:本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,x∈R.
(Ⅰ) 若直线y=kx+1与f(x)的反函数的图象相切,求实数k的值;
(Ⅱ) 设x>0,讨论曲线y=
f(x)
x2
与直线y=m(m>0)公共点的个数;
(Ⅲ) 设a<b,比较
f(a)+f(b)
2
f(b)-f(a)
b-a
的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,x∈R.
(Ⅰ)若直线y=kx+1与f(x)的反函数的图象相切,求实数k的值;
(Ⅱ)设x>0,讨论曲线y=
f(x)
x2
与直线y=m(m>0)公共点的个数;
(Ⅲ)设a<b,比较f(
a+b
2
)
f(b)-f(a)
b-a
的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=kx+1与以C为圆心的圆C:x2+y2-4x-2y+1=0相交与P,Q两点,且∠PCQ=120°,则k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=
x2-8x+20
+
x2+1
的最小值为5;
②若直线y=kx+1与曲线y=|x|有两个交点,则k的取值范围是-1≤k≤1;
③若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2
2
,则m的倾斜角可以是15°或75°
④设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,若对任意n∈N*,均有Sn>0,则数列{Sn}是递增数列
⑤设△ABC的内角A.B.C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acosA则sinA:sinB:sinC为6:5:4
其中所有正确命题的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ax2-x,g(x)=ln(ax)
(1)若直线y=kx-1与函数f(x)、g(x)相切于同一点,求实数a,k的值;
(2)是否存在实数a,使得f(x)≥g(x)成立,若存在,求出实数a的取值集合,不存在说明理由.

查看答案和解析>>

同步练习册答案