精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=2sin(2x+\frac{π}{6})$
(1)若点$P(1,-\sqrt{3})$在角α的终边上,求$f(\frac{α}{2}-\frac{π}{12})$的值
(2)若$x∈[-\frac{π}{6},\frac{π}{3}]$,求f(x)的值域.

分析 (1)利用任意角的三角函数的定义,求得sinα的值,可得$f(\frac{α}{2}-\frac{π}{12})$的值;
(2)根据$x∈[-\frac{π}{6},\frac{π}{3}]$,利用正弦函数的定义域和值域,求得f(x)的值域.

解答 解:(1)∵点$P(1,-\sqrt{3})$在角α的终边上,∴$sinα=\frac{{-\sqrt{3}}}{{\sqrt{{1^2}+{{(-\sqrt{3})}^2}}}}=-\frac{{\sqrt{3}}}{2}$,
∴$f(\frac{α}{2}-\frac{π}{12})=2sin[2(\frac{α}{2}-\frac{π}{12})+\frac{π}{6}]=2sinα=-\sqrt{3}$.
(2)∵$x∈[-\frac{π}{6},\frac{π}{3}]$,∴$2x+\frac{π}{6}∈[-\frac{π}{6},\frac{5π}{6}]$,∴$-\frac{1}{2}≤sin(2x+\frac{π}{6})≤1$,
∴$-1≤2sin(2x+\frac{π}{6})≤2$,即函数的值域为[-1,2].

点评 本题主要考查任意角的三角函数的定义,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图:已知四棱锥P-ABCD,底面是边长为6的正方形,PA=8,PA⊥面ABCD,
点M是CD的中点,点N是PB的中点,连接AM、AN、MN.
(1)求证:AB⊥MN;
(2)求二面角N-AM-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距40海里.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=x2cosx 导数为f′(x),则f′(x)=2xcosx-x2sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A、B、C对应的边分别为a、b、c,4sin2$\frac{A+C}{2}-cos2B=\frac{7}{2}$
(Ⅰ)求角B的度数   
(Ⅱ)若b=$\sqrt{3}$,a+c=3,求a和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(6,$\frac{π}{6}$)和B(10,$\frac{π}{6}$),则A,B两点间的距离为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=(x2+4x+4)$\sqrt{1-2x}$的所有极值的和为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2}$x2+2ax(x>0),g(x)=3a2lnx+b,其中a>0.
(Ⅰ)若a=e时,两曲线y=f(x),y=g(x)有公共点,且在公共点处的切线相同,求b的值;
(Ⅱ)若f(x)≥g(x)-b对任意x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)若对于任意的实数满足|x-1|+|x-3|≥a2+a恒成立,求实数a的取值范围;
(2)若a+b=1,求$\frac{1}{4|b|}$+$\frac{|b|}{a}$的最小值,并指出取得最小值时a的值;
(3)求y=$\frac{2a}{{{a^2}+1}}$,a∈[2,+∞)的取值范围.

查看答案和解析>>

同步练习册答案