①③
分析:①根据空间四点共面的充要条件若
且α+β+γ=1,则A、B、C、D四点在同一平面上;可知①正确;②把
两边平方,化成3=α
2,即=(α+β)
2-(2
)αβ+2,利用基本不等式即可求得α+β的最大值为4+2
,,故可知②错;③根据α=a
2,β=a
2009,γ=0,且A、B、C三点共线,可得a
2+a
2009=1,利用等差数列的性质可得a
3+a
2008=1,利用基本不等式即可求得结果;④根据三点共线的充要条件可知
且α+β=1,则A、B、C三点共线,而A分
所成的比λ一定为
错,如点A在线段BC的延长线上,且BA=
,λ=-3,而此时的
,因此错.
解答:①若α+β+γ=1,则A、B、C、D四点在同一平面上;①正确;
②
,两边平方得,3=α
2=(α+β)
2-(2
)αβ+2≥(α+β)
2-(2
)
+2,
∴α+β≤4+2
,当且仅当
时等号成立,故②错;
③若α=a
2,β=a
2009,γ=0,且A、B、C三点共线,
∴a
2+a
2009=1,∴a
3+a
2008=1,则
=(
)(a
3+a
2008)≥5+4=9.③对.
④若α+β=1(αβ≠0),γ=0,则A、B、C三点共线,
若点A在线段BC的延长线上,且BA=
,λ=-3,
而
=
,
∴
,∴
,
故④错
故答案为①③.
点评:此题是个中档题,综合题.考查共面向量和共线向量定理以及利用基本不等式求最值等基础知识和基本方法,要说明一个命题是真命题,必须给出证明,要说明其是假命题,只要举出反例即可,同时考查了学生灵活应用知识分析解决问题的能力和计算能力.