精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+
a
x
(a>0).
(1)求f(x)的单调区间;
(2)如果P(x0,y0)是曲线y=f(x)上的任意一点,若以P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值;
(3)讨论关于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的实根情况.
(Ⅰ)函数f(x)=lnx+
a
x
(a>0)的定义域为(0,+∞),
f(x)=
1
x
-
a
x2
=
x-a
x2

因为a>0,由f(x)>0得x∈(a,+∞),由f(x)<0得x∈(0,a),
所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).
(Ⅱ)由题意,以P(x0,y0)为切点的切线的斜率k满足
k=f(x0)=
x0-a
x02
1
2
(x0>0),
所以a≥-
1
2
x02+x0
对x0>0恒成立.
又当x0>0时,-
1
2
x02+x0=-
1
2
(x0-1)2+
1
2
1
2

所以a的最小值为
1
2

(Ⅲ)由f(x)=
x3+2(bx+a)
2x
-
1
2
,即lnx+
a
x
=
x3+2(bx+a)
2x
-
1
2

化简得b=lnx-
1
2
x2+
1
2
(x∈(0,+∞)).
h(x)=lnx-
1
2
x2-b+
1
2
,则h(x)=
1
x
-x=
(1+x)(1-x)
x

当x∈(0,1)时,h(x)>0,
当x∈(1,+∞)时,h(x)<0,
所以h(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.
所以h(x)在x=1处取得极大值即最大值,最大值为h(1)=ln1-
1
2
×12-b+
1
2
=-b

所以 
 当-b>0,即b<0时,y=h(x) 的图象与x轴恰有两个交点,方程f(x)=
x3+2(bx+a)
2x
-
1
2
有两个实根,
当b=0时,y=h(x) 的图象与x轴恰有一个交点,方程f(x)=
x3+2(bx+a)
2x
-
1
2
有一个实根,
当b>0时,y=h(x) 的图象与x轴无交点,方程f(x)=
x3+2(bx+a)
2x
-
1
2
无实根.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案