(本题满分12分)
已知椭圆
的左、右焦点为
,过点
斜率为正数的直线交
两点,且
成等差数列。
(Ⅰ)求
的离心率;
(Ⅱ)若直线y=kx(k<0)与
交于C、D两点,求使四边形ABCD面积S最大时k的值。[来源:学*科*网Z*X*X*K]
(Ⅰ)根据椭圆定义及已知条件,有
|AF2|+|AB|+|BF2|=4a, ①
|AF2|+|BF2|=2|AB|, ②
|AF2|2+|AB|2=|BF2|2, ③…3分
由①、②、③,解得|AF2|=a,|AB|=a,|BF2|=a,
所以点A为短轴端点,b=c=a,Γ的离心率e==.…………………5分
(Ⅱ)由(Ⅰ),Γ的方程为x2+2y2=a2.
不妨设C(x1,y1)、D(x2,y2)(x1<x2),
则C、D坐标满足
由此得x1=-,x2=.
设C、D两点到直线AB:x-y+a=0的距离分别为d1、d2,
因C、D两点在直线AB的异侧,则
d1+d2=+=
===.………………………8分
∴S=|AB|( d1+d2)=·a·=·.
设t=1-k,则t>1,==,
当=,即k=-时,最大,进而S有最大值.……………………12分
【解析】略
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com