精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(1)求φ;
(2)怎样由函数y=sin x的图象变换得到函数f(x)的图象,试叙述这一过程.
分析:(1)由2×
π
8
+φ=kπ+
π
2
(-π<φ<0)即可求得φ;
(2)利用y=Asin(ωx+φ)的图象变换即可表述变换过程.
解答:解:(1)∵f(x)=sin(2x+φ)(-π<φ<0)图象的一条对称轴是直线x=
π
8

∴2×
π
8
+φ=kπ+
π
2
,k∈Z
∴φ=kπ+
π
4
(k∈Z),
又-π<φ<0,
∴φ=-
4

∴f(x)=sin(2x-
4
).
(2)令g(x)=sinx,将g(x)=sinx的图象向右平移
4
个单位,得到y=g(x-
4
)=sin(x-
4
);再将y=sin(x-
4
)的图象上的所有点的横坐标变为原来的
1
2
(纵坐标不变)得到y=f(x)=sin(2x-
4
)的图象.
点评:本题考查正弦函数的对称性,考查y=Asin(ωx+φ)的图象变换,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2π+?)(-π<?<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求?;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步练习册答案