精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(2π+?)(-π<?<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求?;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.
分析:(Ⅰ)y=f(x)图象的一条对称轴是直线x=
π
8
.就是x=
π
8
时函数取得最值,结合?的范围,求出?的值;
(Ⅱ)利用正弦函数的单调增区间,直接求函数y=f(x)的单调增区间;
(Ⅲ)利用导数求出导函数的值域,从而证明直线5x-2y+c=0与函数y=f(x)的图象不相切.
解答:解:(Ⅰ)∵x=
π
8
是函数y=f(x)的图象的对称轴,
sin(2×
π
8
+?)=±1
,∴
π
4
+π=kπ+
π
2
,k∈Z.
∵-π<?<0,?=-
4

(Ⅱ)由(Ⅰ)知?=-
4
,因此y=sin(2x-
4
)

由题意得2kπ-
π
2
≤2x-
4
≤2kπ+
π
2
,k∈Z.
所以函数y=sin(2x-
4
)
的单调增区间为[kπ+
π
8
,kπ+
8
],k∈Z

(Ⅲ)证明:∵|y'|=|(sin(2x-
4
))′|
=|2cos(2x-
4
)|≤2

所以曲线y=f(x)的切线斜率取值范围为[-2,2],
而直线5x-2y+c=0的斜率为
5
2
>2,
所以直线5x-2y+c=0与函数y=sin(2x-
4
)
的图象不相切.
点评:本小题主要考查三角函数性质及图象的基本知识,考查推理和运算能力.是综合题,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(1)求φ;
(2)怎样由函数y=sin x的图象变换得到函数f(x)的图象,试叙述这一过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步练习册答案