精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2011
2011
g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x2011
2011
,设F(x)=f(x+3)•g(x-3),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为
 
分析:利用导数分别求出函数f(x)、g(x)的零点所在的区间,f′(x)>0,因此f(x)是R上的增函数,且f(0)=1>0,f(-1)=-
1
2
-
1
3
-
1
4
-…-
1
2011
<0,g′(x)<0,因此g(x)是R上的减函数,且g(1)=
1
2
-
1
3
+
1
4
-…-
1
2011
>0,g(2)=1-2+2-
8
3
+…-
22011
2011
<0,函数f(x)在(-1,0)上有一个零点;函数g(x)在(1,2)上有一个零点,,然后要求F(x)=f(x+3)•g(x-3)的零点所在区间,即求f(x+3)的零点和g(x-3)的零点所在区间,根据图象平移即可求得结果.
解答:解:f′(x)=1-x+x2-x3+…+x2010=
1     x=1
1- x2011
1-x
 x≠1

∴f′(x)>0,因此f(x)是R上的增函数,
且f(0)=1>0,f(-1)=-
1
2
-
1
3
-
1
4
-…-
1
2011
<0,
∴函数f(x)在(-1,0)上有一个零点;
g′(x)=-1+x-x2+x3-…-x2010=
-1     x=1
-
1-x2011
1-x
 x≠1

∴g′(x)<0,因此g(x)是R上的减函数,且g(1)=
1
2
-
1
3
+
1
4
-…-
1
2011
>0,
g(2)=1-2+2-
8
3
+…-
22011
2011
<0,
∴函数g(x)在(1,2)上有一个零点,
∵F(x)=f(x+3)•g(x-3),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,
∴f(x+3)的零点在(-4,-3)内,g(x-3)的零点在(4,5)内,
因此F(x)=f(x+3)•g(x-3)的零点均在区间[-4,5]内,
∴b-a的最小值为9.
故答案为:9.
点评:此题是难题.考查函数零点判定定理和利用导数研究函数的单调性以及数列求和问题以及函数图象的平移,体现了分类讨论的思想,以及学生灵活应用知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案