精英家教网 > 高中数学 > 题目详情
4.某校有教职工500人,对他们进行年龄状况和受教育程度的调查,其结果如下:
高中专科本科研究生合计
35岁以下101505035245
35-50201002013153
50岁以上3060102102
随机的抽取一人,求下列事件的概率:
(1)50岁以上具有专科或专科以上学历;
(2)具有本科学历;
(3)不具有研究生学历.

分析 由已知条件利用等可能事件概率计算公式、互斥事件概率加法公式和对立事件概率计算公式求解.

解答 解:(1)设事件A表示“50岁以上具有专科或专科以上学历”
P(A)=$\frac{60+10+2}{500}$=0.144.
(2)设事件B表示“具有本科学历”
P(B)=$\frac{50+20+10}{500}$=0.16.
(3)设事件C表示“不具有研究生学历”,
P(C)=1-$\frac{35+13+2}{500}$=0.9.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式、互斥事件概率加法公式和对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数y=($\frac{1}{2}$)|x|+1-m的图象与x轴有公共点,则m的取值范围为(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设随机变量ξ服从B(6,$\frac{1}{2}$),则P(ξ=3)的值是(  )
A.$\frac{5}{8}$B.$\frac{3}{8}$C.$\frac{5}{16}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知F为抛物线y2=2px(p>0)的焦点,AB为抛物线的过焦点的弦,C为抛物线的准线与对称轴的交点.若以AC为直径的圆恰过点B,则|AF|-|BF|的值为2p.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,那么称函数f(x)在区间D上可被g(x)替代,D称为“替代区间”.给出以下命题:
①f(x)=x2+1在区间(-∞,+∞)上可被g(x)=x2+$\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一个“替代区间”为$[\frac{1}{4},\frac{3}{2}]$;
③f(x)=lnx在区间[1,e]可被g(x)=x-b替代,则e-2≤b≤2;
其中真命题的有①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.α与角150°终边相同,则$\frac{α}{2}$是一或三象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n,n∈N*,且a2=6.
(1)求a1,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明;
(3)设Cn=4n+(-1)n-1λ•2${\;}^{\frac{{a}_{n}}{2n-1}+1}$(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,数列{cn}是单调递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)写出两个平面向量的夹角的定义和两个平面向量数量积的定义;
(2)写出两角差得余弦公式并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,在其定义域内为偶函数且有最小值的是(  )
A.f(x)=2xB.f(x)=2|x|+x2C.f(x)=$\frac{1}{{2}^{x}}$+x3D.f(x)=ex-e-x

查看答案和解析>>

同步练习册答案