精英家教网 > 高中数学 > 题目详情
10.已知对任意x,y∈N*,都有f(x+y)=f(x)•f(y),若f(1)=2,求$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+^+$\frac{f(2011)}{f(2010)}$的值.

分析 令y=1,得$\frac{f(x+1)}{f(x)}=2$,即可$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+^+$\frac{f(2011)}{f(2010)}$的值.

解答 解:(1)∵f(x+y)=f(x)•f(y)且f(1)=2,
∴令y=1,则f(x+1)=f(x)•f(1)=2f(x),
即$\frac{f(x+1)}{f(x)}=2$,
则$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+^+$\frac{f(2011)}{f(2010)}$=2+2+…2=2×2010=4020.

点评 本题主要考查函数值的计算,利用赋值法是解决抽象函数的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.tanA+$\frac{1}{tanA}$=m,则sin2A=(  )
A.$\frac{1}{m^2}$B.$\frac{1}{m}$C.2mD.$\frac{2}{m}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=a2x-3a,a∈R.
(1)若f(1)=0.求a的值;
(2)若f(1)<4.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.△ABC中,AB=8,AC=6,M为BC的中点,O为△ABC的外心,$\overrightarrow{AO}$•$\overrightarrow{AM}$=25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.集合{1}与集合{x|x2-1=0}的关系是?.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=a-$\frac{1}{|x|}$.
(1)求证:函数y=f(x)在(-∞,0)上是减函数;
(2)若f(x)<-2x在(-∞,0)上恒成立,求实数a的取值范围;
(3)若函数y=f(x)在[m,n]上的值域是[m,n](m≠n),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=ax2-$\sqrt{2}$(a>0),且f(f($\sqrt{2}$))=-$\sqrt{2}$,则a=(  )
A.1B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式$\frac{1}{x}$<a的解集是{x|a<x<0},则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将函数f(x)=2sin(3x+$\frac{π}{4}$)的图象向左平移$\frac{π}{3}$个单位后得到函数y=g(x)的图象,则函数y=f(x)与函数y=g(x)的图象关于(  )
A.x轴对称B.原点对称C.y轴对称D.直线x=$\frac{π}{2}$对称

查看答案和解析>>

同步练习册答案