精英家教网 > 高中数学 > 题目详情
已知椭圆的焦点为在椭圆上,则椭圆的方程为(   )
A.B.C.D.
A
因为椭圆的焦点为,所以椭圆的焦点在轴上且,所以设椭圆方程为。因为点在椭圆上,所以代入可得,解得,从而可得椭圆方程,故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆:的右焦点为,离心率为.
(Ⅰ)求椭圆的方程及左顶点的坐标;
(Ⅱ)设过点的直线交椭圆两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆的标准方程为.
(1)求椭圆的长轴和短轴的大小;
(2)求椭圆的离心率;
(3)求以此椭圆的长轴端点为短轴端点,并且经过点P(-4,1)的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为过椭圆的中心的弦,为椭圆的左焦点,则?面积的最大值(  )
A.6B.12C.24D.36

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆的离心率为,直线过点,且与椭圆相切于点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过点的直线与椭圆相交于不同的两点,使得
?若存在,试求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:的左、右焦点为,其上顶点为.已知是边长为的正三角形.
(Ⅰ)求椭圆C的方程; 
(Ⅱ)过点任作一动直线交椭圆C于两点,记若在线段上取一点使得,试判断当直线运动时,点是否在某一定直线上运动?若在,请求出该定直线的方程;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)求过点且与椭圆有相同焦点的椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点重合,则该椭圆的离心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的两焦点,为椭圆上一点,若,则离心率的范围是___________.

查看答案和解析>>

同步练习册答案