精英家教网 > 高中数学 > 题目详情
若奇函数f(x)在(-∞,0]上单调递减,则不等式f(lgx)+f(1)>0的解集是
(0,
1
10
(0,
1
10
分析:利用函数的奇偶性和单调性之间的关系,将不等式进行转化,然后解不等式即可.
解答:解:∵奇函数f(x)在(-∞,0]上单调递减,
∴f(x)在[0,+∞)上单调递减,
即f(x)在R上单调递减.
由f(lgx)+f(1)>0得
f(lgx)>-f(1)=f(-1),
∴lgx<-1,
解得0<x<
1
10

即不等式的解集为(0,
1
10
),
故答案为:(0,
1
10
).
点评:本题主要考查函数奇偶性的和单调性的应用,利用函数的奇偶性的定义将不等式进行转化是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、若奇函数f(x)在R上是单调递增函数,且有f(a)+f(3)<0,则a的取值范围是
a<-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•温州模拟)若奇函数f(x)在(0,+∞)是增函数,又f(-3)=0,则{x|
x
f(x)
<0}
的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若奇函数f(x)在定义域(-1,1)上递减,且f(1-a)+f(1-a2)>0,则α的取值范围是
1<a<
2
1<a<
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若奇函数f(x)在[2,5]上为增函数,且有最小值0,则它在[-5,-2]上(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若奇函数f(x)在定义域(-1,1)上是减函数
(1)求满足f(1-a)+f(1-a2)<0的集合M
(2)对(1)中的a,求函数F(x)=loga[1-
1a
)
x2-x
]的定义域.

查看答案和解析>>

同步练习册答案