精英家教网 > 高中数学 > 题目详情
设P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上除顶点外的任意一点,F1、F2分别是双曲线的左、右焦点,△PF1F2的内切圆与边F1F2相切于点M,则
F1M
MF2
=(  )
A.a2B.b2C.a2+b2D.
1
2
b2
不妨设P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右支上一点,则|PF1|-|PF2|=2a,
∵△PF1F2的内切圆与边F1F2相切于点M,
∴|F1M|-|F2M|=2a,
∵|F1M|+|F2M|=2c,
∴|F1M|=a+c,|F2M|=c-a,
F1M
MF2
=|F1M||F2M|=c2-a2=b2
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知点F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是钝角三角形,则该双曲线离心率的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为
3
,则p=(  )
A.1B.
3
2
C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点,对称轴为坐标轴,离心率e=
3
,一条准线的方程为3x-
6
=0
,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点,直线l过点F且与双曲线
x2
a2
-
y2
b2
=1
的两条渐近线l1,l2分别交于点M,N,与椭圆交于点A,B.
(Ⅰ)若∠MON=
π
3
,双曲线的焦距为4.求椭圆方程.
(Ⅱ)若
OM
MN
=0
(O为坐标原点),
FA
=
1
3
AN
,求椭圆的离心率e.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

图中两个两条双曲线的离心率分别是e1、e2,且e1<e2,则曲线C1的离心率是______,曲线C2的离心率是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在双曲线
x2
9
-
y2
16
=1
上,且点M到左焦点的距离为7,则它到右焦点的距离为(  )
A.13B.1C.13或1D.非以上答案

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的渐近线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.

查看答案和解析>>

同步练习册答案