分析 (1)利用平面向量数量积的坐标运算,整理可得b2+c2-a2=-bc,利用余弦定理可求cosA=-$\frac{1}{2}$,结合范围A∈(0,π),可得A的值.
(2)由(1)及a=3,利用余弦定理,基本不等式可求得(b+c)2≤12进而可求△ABC的周长的最大值.
解答 (本题满分为12分)
解:(1)∵向量$\overrightarrow{m}$=(b+c,a2+bc),$\overrightarrow{n}$=(b+c,-1),且$\overrightarrow{m}$•$\overrightarrow{n}$=0,
∴(b+c)2-a2-bc=0,
∴b2+c2-a2=-bc,…2分
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$,…4分
又A∈(0,π),所以$A=\frac{2π}{3}$…(6分)
(2)由(1)及a=3,得${a^2}={b^2}+{c^2}+bc={({b+c})^2}-bc≥{({b+c})^2}-{({\frac{b+c}{2}})^2}=\frac{3}{4}{({b+c})^2}$,
所以(b+c)2≤12,…(9分)
所以$b+c≤2\sqrt{3},a+b+c≤3+2\sqrt{3}$,…(11分)
故△ABC的周长的最大值$3+2\sqrt{3}$…(12分)
点评 本题主要考查了平面向量数量积的坐标运算,余弦定理,基本不等式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{243π}{16}$ | B. | $\frac{81π}{16}$ | C. | $\frac{81π}{4}$ | D. | $\frac{27π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com