精英家教网 > 高中数学 > 题目详情

(本题满分12分)

已知函数y=sinωx•cosωx(ω>0) (ω>0)的周期为 , 

(I) 求ω 的值;

(II) 当0≤x≤ 时,求函数的最大值和最小值及相应的x的值.

 

【答案】

(1)ω =2; (2)当x= 时,y=0  当x=时,y= 。

【解析】(1)根据两角和的正弦公式可得y= sin(2ωx+ )+ ,

所以T=, ∴ ω =2.

(2)再根据正弦函数的性质求出特定区间上的最值问题即可.

(1) y=sin2ωx+ cos2ωx+  = sin(2ωx+ )+           (4)

∵ T=             ∴ ω =2                 (6)      

 (2) y=sin(4x+ )+    

∵  0≤x≤    ∴ ≤4x+ ≤π +             (8)

∴  当x= 时,y=0  当x=时,y=          (12)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案