精英家教网 > 高中数学 > 题目详情
(2013•太原一模)为了解某校高三毕业班报考体育专业学生的体重(单位:千克)情况,将他们的体重数据整理后得到如下频率分布直方图.已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(I)求该校报考体育专业学生的总人数n;
(Ⅱ)已知A,a是该校报考体育专业的两名学生,A的体重小于55千克,a的体重不小于70千克.现从该校报考体育专业的学生中选取体重小于55千克的学生1人、体重不小于70千克的学生2人组成3人训练组,求A不在训练组且a在训练组的概率.
分析:(I)设报考体育专业的人数为n,前三小组的频率分别为p1,p2,p3,根据前3个小组的频率之比为1:2:3和所求频率和为1,建立方程组,解之即可求出第二组频率,然后根据样本容量等于频数÷频率进行求解即可;
(II)根据古典概型的计算公式,先求从该校报考体育专业的学生中选取体重小于55千克的学生1人、体重不小于70千克的学生2人组成3人训练组的所有可能情形,再求符合要求的可能情形,根据公式计算即可.
解答:解:(I)设该校报考体育专业的人数为n,前三小组的频率分别为p1,p2,p3,则由题意可知,
p2=2p1
p3=3p1
p1+p2+p3+(0.0357+0.0125)×5=1

解得p1=0.125,p2=0.25,p3=0.375.
又因为p2=0.25=
12
n
,故n=48.
(II)由题意,报考体育专业的学生中,体重小于55千克的人数为48×0.125=6,记他们分别为A,B,C,D,E,F,
体重不小于70千克的人数为48×0.0125×5=3,记他们分别为a,b,c,
则从该校报考体育专业的学生中选取体重小于55千克的学生1人、体重不小于70千克的学生2人组成3人训练组的结果为:(A,a,b),(A,a,c),(A,b,c),(B,a,b),(B,a,c),(B,b,c),(C,a,b),(C,a,c),(C,b,c),(D,a,b),(D,a,c),(D,b,c),(E,a,b),(E,a,c),(E,b,c),(F,a,b),(F,a,c),(F,b,c),共18种;
其中A不在训练组且a在训练组的结果有:(B,a,b),(B,a,c),(C,a,b),(C,a,c),(D,a,b),(D,a,c),(E,a,b),(E,a,c),(F,a,b),(F,a,c),共10种,
∴所求概率P=
10
18
=
5
9
点评:本题主要考查了频率分布直方图,以及列举法计算基本事件数及事件发生的概率,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•太原一模)x、y满足约束条件
x+y≥1
x-y≥-1
2x-y≤2
,若目标函数z=ax+by(a>0,b>0)的最大值为7,则
3
a
+
4
b
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:
x=-2+
2
2
t
y=-4+
2
2
t
,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;    
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)复数
i
1-i
的共轭复数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知向量
a
b
满足|
a
|=1,|
b
|=
2
,(
a
-
b
)⊥
a
,向量
a
b
的夹角为
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知函数f(x)=|2x+1|+|2x-3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)<|a-1|的解集非空,求实数a的取值范围.

查看答案和解析>>

同步练习册答案