精英家教网 > 高中数学 > 题目详情
2.已知数列{an}满足:(1+a1)•(2+a2)•(4+a3)•…•(2n-1+an)=n2,则{an}的通项公式为$\left\{\begin{array}{l}{0,n=1}\\{(\frac{n}{n-1})^{2}-{2}^{n-1},n≥2}\end{array}\right.$.

分析 由已知条件,先令n=1,求出a1;再利用原式求出n≥2时数列的前n-1项的表达式,把原式与n≥2时数列的前n-1项的表达式相除,由此能得到an关于n的方程,从而能求出{an}的通项公式.

解答 解:∵(1+a1)•(2+a2)•(4+a3)•…(2n-2+an-1)•(2n-1+an)=n2,①
∴(1+a1)•(2+a2)•(4+a3)•…•(2n-2+an-1)=(n-1)2,n≥2,②
∴当n=1时,1+a1=1,解得a1=0,
当n≥2时,$\frac{①}{②}$,得${2}^{n-1}+{a}_{n}=(\frac{n}{n-1})^{2}$,
∴an=$(\frac{n}{n-1})^{2}-{2}^{n-1}$.
∴${a}_{n}=\left\{\begin{array}{l}{0,n=1}\\{(\frac{n}{n-1})^{2}-{2}^{n-1},n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{0,n=1}\\{(\frac{n}{n-1})^{2}-{2}^{n-1},n≥2}\end{array}\right.$.

点评 本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意作商法和分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知复数z=1-i(i是虚数单位),则$\overline{z}$+$\frac{2i}{z}$等于(  )
A.2+2iB.2C.2-iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.因式分解:(x+y)3+2xy(1-x-y)-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列数列的最大或最小项对应的n的值:
(1)an=$\frac{\sqrt{99}+n}{\sqrt{101}-n}$;
(2)an=$\frac{{n}^{2}+4n+69}{n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解关于x的不等式$\frac{ax-1}{x+a}$>0,(参数a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.指出下列各题中集合之间的关系:
(1)集合{x|x2-6x+8=0}与集合{2,3,4,5};
(2)集合{x|2≤x≤6}与集合{2,3,4,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明:“双勾函数”f(x)=ax+$\frac{b}{x}$(a>0,b>0):在 (-∞,-$\sqrt{\frac{b}{a}}$],[$\sqrt{\frac{b}{a}}$,+∞)上单调递增,在[-$\sqrt{\frac{b}{a}}$,0),(0,$\sqrt{\frac{b}{a}}$]上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值;若不具有“P(a)性质”,说明理由;
(2)已知y=f(x)具有“P(0)性质”,且当x≤0时f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.

查看答案和解析>>

同步练习册答案