精英家教网 > 高中数学 > 题目详情
若双曲线C与椭圆
x2
25
+
y2
9
=1
有相同的焦点,且一条渐近线的方程为y=
7
x
,则C的方程为
x2
2
-
y2
14
=1
x2
2
-
y2
14
=1
分析:求出椭圆的焦点坐标;据双曲线的系数满足c2=a2+b2;双曲线的渐近线的方程与系数的系数的关系列出方程组,求出a,b;写出双曲线方程.
解答:解:椭圆的焦点坐标为(±4,0)
设双曲线的方程为
x2
a2
-
y2
b2
=1
,∵椭圆与双曲线共同的焦点,∴a2+b2=16①
∵一条渐近线方程是y=
7
x
,∴
b
a
=
7

解①②组成的方程组得a=
2
,b=
14
,所以双曲线方程为
x2
2
-
y2
14
=1

故答案为
x2
2
-
y2
14
=1
点评:本题考查利用待定系数法求圆锥曲线的方程其中椭圆中三系数的关系是:a2=b2+c2;双曲线中系数的关系是:c2=a2+b2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知,椭圆C以双曲线x2-
y23
=1
的焦点为顶点,以双曲线的顶点为焦点.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于M、N两点(M、N不是左右顶点),且以线段MN为直径的圆过点A(2,0),求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:y2-x2=8,直线l:y=-x+8,若椭圆M与双曲线C有公共焦点,与直线l有公共点P,求椭圆长轴的最小值及此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区一模)对于双曲线C:
x2
a2
-
y2
b2
=1,(a>0,b>0)
,定义C1
x2
a2
+
y2
b2
=1
,为其伴随曲线,记双曲线C的左、右顶点为A、B.
(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;
(2)若双曲线C的方程为x2-y2=1,过点M(-
3
,0)
且与C的伴随曲线相切的直线l交曲线C于N1、N2两点,求△ON1N2的面积(O为坐标原点)
(3)若双曲线C的方程为
x2
4
-
y2
2
=1
,弦PQ⊥x轴,记直线PA与直线QB的交点为M,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区一模)对于双曲线C:
x2
a2
-
y2
b2
=1,(a>0,b>0)
,定义C1
x2
a2
+
y2
b2
=1
,为其伴随曲线,记双曲线C的左、右顶点为A、B.
(1)当a>b时,记双曲线C的半焦距为c,其伴随椭圆C1的半焦距为c1,若c=2c1,求双曲线C的渐近线方程;
(2)若双曲线C的方程为
x2
4
-
y2
2
=1
,弦PQ⊥x轴,记直线PA与直线QB的交点为M,求动点M的轨迹方程;
(3)过双曲线C:x2-y2=1的左焦点F,且斜率为k的直线l与双曲线C交于N1、N2两点,求证:对任意的k∈[-2-
1
4
2-
1
4
]
,在伴随曲线C1上总存在点S,使得
FN1
FN2
=
FS
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C与双曲线x2-y2=1共焦点,且下顶点到直线x+y-2=0的距离为
3
2
2

(1)求椭圆C的方程;
(2)若一直线l2:y=kx+m与椭圆C相交于A、B(A、B不是椭圆的顶点)两点,以AB为直径的圆过椭圆的上顶点,求证:直线l2过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案