精英家教网 > 高中数学 > 题目详情
方程为
x2
a2
+
y2
b2
=1(a>b>0)
的椭圆左顶点为A,左、右焦点分别为F1、F2,D是它短轴上的一个顶点,若3
DF1
=
DA
+
2DF2
,则该椭圆的离心率为(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5
分析:先以圆为中心建立直角坐标系,则D,A,及两个焦点坐标可知,表示出
DF1
,DA
2DF2
进而求得a和c关系,则离心率可得.
解答:解:以椭圆为中心建立直角坐标系,D(0,b),A(-a,0) F1(-c,0) F2(c,0)
3
DF1
=
DA
+
2DF2

∴-3c=-a+2c
左右两边同除a推出  求得e=
c
a
=
1
5

故选D
点评:圆锥曲线的概念与性质(特别是离心率)是高考的焦点,每年必考题.椭圆、双曲线、抛物线三种曲线都可能考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N)是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2构成了一个公差为d(d≠0)的等差数列,其中O是坐标原点.记Sn=a1+a2+…+an
(1)若C的方程为
x2
100
+
y2
25
=1,n=3.点P1(10,0)及S3=255,求点P3的坐标;(只需写出一个)
(2)若C的方程为
x2
a2
+
y2
b2
=1
(a>b>0).点P1(a,0),对于给定的自然数n,当公差d变化时,求Sn的最小值;
(3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点P1,P2,…Pn存在的充要条件,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C方程为
x2
a2
+y2=1
,过右焦点斜率为1的直线到原点的距离为
2
2

(1)求椭圆方程.
(2)已知A,B方程为椭圆的左右两个顶点,T为椭圆在第一象限内的一点,l为点B且垂直x轴的直线,点S为直线AT与直线l的交点,点M为以SB为直径的圆与直线TB的另一个交点,求证:O,M,S三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆E1方程为
x2
a2
+
y2
b2
=1(a>b>0)
,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C. 
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=
1
2
,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当
k1
k2
=
b2
a2
时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知点P(
x0,y0)、M(m,n)是圆锥曲线C上不与顶点重合的任意两点,MN是垂直于x轴的一条垂轴弦,直线MP,NP分别交x轴于点E(xE,0)和点F(xF,0).
(Ⅰ)试用x0,y0,m,n的代数式分别表示xE和xF
(Ⅱ)已知“若点P(x0,y0)是圆C:x2+y2=R2上的任意一点(
x0•y0≠0),MN是垂直于x轴的垂轴弦,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),则xExF=R2”.类比这一结论,我们猜想:“若曲线C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
(如图),则xE•xF也是与点M、N、P位置无关的定值”,请你对该猜想给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C方程为
x2
a2
+y2=1
,过右焦点斜率为1的直线到原点的距离为
2
2

(1)求椭圆方程.
(2)已知A、B方程为椭圆的左右两个顶点,T为椭圆在第一象限内的一点,l为点B且垂直x轴的直线,点S为直线AT与直线l的交点,点M为以SB为直径的圆与直线TB的另一个交点,求证:
TB
-
SM
=
TB
-
SO

查看答案和解析>>

同步练习册答案