精英家教网 > 高中数学 > 题目详情

【题目】“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额(百元)的频率分布直方图如图所示:

(1)求网民消费金额的平均值和中位数

(2)把下表中空格里的数填上,能否有90%的把握认为网购消费与性别有关;

【答案】(1)平均值为11.5,中位数为10;(2)答案见解析.

【解析】试题分析: (1)以每组的中间值代表本组的消费金额,计算网民消费金额的平均值;利用中位数两边频率相等求出中位数的值;(2)填写列联表,计算,对照临界值得出结论.

试题解析:

(1)以每组的中间值代表本组的消费金额,则网民消费金额的平均值

直方图中第一组,第二组的频率之和为

的中位数.

(2)

25

25

50

20

30

50

45

55

100

.

没有的把握认为网购消费与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= 为R的单调函数,则实数a的取值范围是( )
A.(0,+∞)
B.[﹣1,0)
C.(﹣2,0)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某粮库拟建一个储粮仓如图所示,其下部是高为2的圆柱,上部是母线长为2的圆锥,现要设计其底面半径和上部圆锥的高,若设圆锥的高,储粮仓的体积为.

(1)求关于的函数关系式;(圆周率用表示)

(2)求为何值时,储粮仓的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求的单调区间.

)当时,求函数在区间上的最小值.

)在条件()下,当最小值为时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格试销,得到一组销售数据,如下表所示:

(已知 ).

(1)求出的值;

(2)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;(3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值.当销售数据的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个数据中任取2个,求抽取的2个数据中至少有1个是“好数据”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和是Sn , 且Sn+ =1.
(1)求数列{an}的通项公式;
(2)记bn=log3 ,数列 的前n项和为Tn , 若不等式Tn<m,对任意的正整数n恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:直线,一个圆与轴正半轴与轴正半轴都相切,且圆心到直线的距离为

)求圆的方程

是直线上的动点, 是圆的两条切线, 分别为切点,求四边形的面积的最小值.

)圆与轴交点记作,过作一直线与圆交于 两点, 中点为,求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,f(x)=log2(1+ax).

(1)求f(x2)的值域;

(2)若关于x的方程f(x)-log2[(a-4)x2+(2a-5)x]=0的解集恰有一个元素,求实数a的取值范围;

(3)当a>0时,对任意的t∈(,+∞),f(x2)在[t,t+1]的最大值与最小值的差不超过4,求a的取值范围.

查看答案和解析>>

同步练习册答案