精英家教网 > 高中数学 > 题目详情

已知a∈R,函数数学公式(其中e为自然对数的底).
(1)当a>0时,求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在求出x0的值,若不存在,请说明理由.

解:(1)∵∴f′(x)==,令f′(x)=0得,x=a,
①若0<a<e,当x∈(0,a)时,f′(x)<0,函数f(x)在区间(0,a)上单调递减,当x∈(a,e)时,f′(x)>0,函数f(x)在区间(a,e)上单调递增,
所以当x=a时,函数f(x)在区间(0,e]上取得最小值lna.
②若a≥e,则f′(x)≤0,函数f(x)在区间(0,e]上单调递减,所以当x=e时,函数f(x)在区间(0,e]上取得最小值.;
综上所述,当0<a<e时,函数f(x)在区间(0,e]上取得最小值lna,当a≥e时,函数f(x)在区间(0,e]上取得最小值.;
(2)不存在.证明如下
,x∈(0,e],
∴g′(x)=•ex+(lnx-1)ex+1=(+lnx-1)ex+1
由(1)知,当a=1时,,此时f(x)在区间(0,e]上取得最小值ln1=0,即,而ex>0,所以g′(x)≥1>0,
又曲线y=g(x)在点x=x0处的切线与y轴垂直,等价于g′(x0)=0有实数根,而g′(x)>0,所以方程g′(x0)=0无实数根,
故不存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直.
分析:(1)得出f′(x)==,利用函数单调性与导数的关系寻求f(x)在区间(0,e]上单调性,得出最小值.
(2)曲线y=g(x)在点x=x0处的切线与y轴垂直,等价于g′(x0)=0有实数根.g′(x)=•ex+(lnx-1)ex+1=(+lnx-1)ex+1其中括号内部分正好为当a=1时,,利用(1)的结论,得出g′(x)>0,所以方程g′(x0)=0无实数根,故不存在.
点评:本题考查函数单调性与导数的关系,函数最值求解,导数的几何意义,考查分类讨论、转化、整体代换、计算能力.是好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+∅),(A>0,ω>0,0<∅<π),x∈R的最大值是2,最小正周期为2π,其图象经过点M(
π
2
,1)

(1)求f(x)的解析式;
(2)求函数f(x)的单调减区间;
(3)已知a∈(
π
2
,π)
,且f(a+
3
)
=-
2
3
,求tan(2π-a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①已知
a
=(3,  4), 
b
=(0,  1)
,则
a
b
方向上的投影为4;
②若函数y=(a+b)cos2x+(a-b)sin2x(x∈R)的值恒等于2,则点(a,b)关于原点对称的点的坐标是(0,-2);
③函数f(x)=
1
lgx
在(0,+∞)上是减函数;
④已知函数f(x)=ax2+(b+c)x+1(a≠0)是偶函数,其定义域为[a-c,b],则点(a,b)的轨迹是直线;
⑤P是△ABC边BC的中线AD上异于A、D的动点,AD=3,则
PA
•(
PB
+
PC
)
的取值范围是[-
9
2
,  0)

其中所有正确命题的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数f(x)=
2x-k
x2+1
的定义域为[a,b].
(1)当k=0时,求函数f(x)的值域;
(2)证明:函数f(x)在其定义域[a,b]上是增函数;
(3)在(1)的条件下,设函数g(x)=x3-3m2x+
3
5
 
(-
1
2
≤x≤
1
2
 0<m<
1
2
)
,若对任意的x1∈[-
1
2
1
2
]
,总存在x2∈[-
1
2
1
2
]
,使得f(x2)=g(x1)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,f(x)=a•ex是定义在R上的函数,函数f-1(x)=ln
x
a
(x∈(0,+∞))
,并且曲线y=f(x)在其与坐标轴交点处的切线和曲线y=f-1(x)在其与坐标轴交点处的切线互相平行.
(1)求a的值;
(2)设函数g(x)=
x-m
f-1(x)
,当x>0且x≠1时,不等式g(x)>
x
恒成立,求实数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a
1
2
且a≠1.条件p:函数f(x)=log(2a-1)x在其定义域上是减函数;条件q:函数g(x)=
x+|x-a|-2
的定义域为R.如果p∨q为真,试求a的取值范围.

查看答案和解析>>

同步练习册答案