精英家教网 > 高中数学 > 题目详情

直线y=x与椭圆C: +=1的交点在x轴上的射影恰好是椭圆的焦点,则椭圆C的离心率为(  )

(A) (B) 

(C)  (D)


A

解析:设直线y=x与椭圆C: +=1在第一象限的交点为A,依题意得点A的坐标为(c,c),

又点A在椭圆C上,故有+=1,

因为b2=a2-c2,

所以+=1,

所以c4-3a2c2+a4=0,

即e4-3e2+1=0,

所以e=(e=舍去).


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


已知双曲线C1: -=1(a>0,b>0)与双曲线C2: -=1有相同的渐近线,且C1的右焦点为F(,0),则a=    ,b=    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是(  )

(A) + =1 (B) +=1

(C) +=1  (D) +=1

查看答案和解析>>

科目:高中数学 来源: 题型:


设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点P(a,b)满足|PF2|=|F1F2|.

(1)求椭圆的离心率e;

(2)设直线PF2与椭圆相交于A,B两点.若直线PF2与圆(x+1)2+(y-)2=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知A、B分别为椭圆+=1(a>b>0)的左、右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,若∠DBP=,则此椭圆的离心率为(  )

(A)   (B) (C)   (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆C: +=1(a>b>0),左、右两个焦点分别为F1,F2,上顶点A(0,b),△AF1F2为正三角形且周长为6.

(1)求椭圆C的标准方程及离心率;

(2)O为坐标原点,P是直线F1A上的一个动点,求|PF2|+|PO|的最小值,并求出此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:


在平面直角坐标系xOy中,已知椭圆C1: +=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.

(1)求椭圆C1的方程;

(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.

(1)求圆C2的圆心M到抛物线C1准线的距离;

(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


某工厂对200个电子元件的使用寿命进行检查,按照使用寿命(单位:h),可以把这批电子元件分成第一组[100,200],第二组(200,300],第三组(300,400],第四组(400,500],第五组(500,600],第六组(600,700],由于工作中不慎将部分数据丢失,现有以下部分图表:

分组

[100,200]

(200,300]

(300,400]

(400,500]

(500,600]

(600,700]

频数

B

30

E

F

20

H

频率

C

D

0.2

0.4

G

I

(1)求图2中的A及表格中的BCDEFGHI的值;

(2)求图2中阴影部分的面积;

(3)若电子元件的使用时间超过300h为合格产品,求这批电子元件合格的概率.

查看答案和解析>>

同步练习册答案