精英家教网 > 高中数学 > 题目详情
(2013•天津)设a+b=2,b>0,则当a=
-2
-2
时,
1
2|a|
+
|a|
b
取得最小值.
分析:由于a+b=2,b>0,从而
1
2|a|
+
|a|
b
=
1
2|a|
+
|a|
2-a
,(a<2),设f(a)=
1
2|a|
+
|a|
2-a
,(a<2),画出此函数的图象,结合导数研究其单调性,即可得出答案.
解答:解:∵a+b=2,b>0,
1
2|a|
+
|a|
b
=
1
2|a|
+
|a|
2-a
,(a<2)
设f(a)=
1
2|a|
+
|a|
2-a
,(a<2),画出此函数的图象,如图所示.
利用导数研究其单调性得,
当a<0时,f(a)=-
1
2a
+
a
a-2

f′(a)=
1
2a2
-
2
(a-2)2
=
-(3a-2)(a+2)
2a2(a-2)2
,当a<-2时,f′(a)<0,当-2<a<0时,f′(a)>0,
故函数在(-∞,-2)上是减函数,在(-2,0)上是增函数,
∴当a=-2时,
1
2|a|
+
|a|
b
取得最小值
3
4

同样地,当0<a<2时,得到当a=
3
4
时,
1
2|a|
+
|a|
b
取得最小值
5
4

综合,则当a=-2时,
1
2|a|
+
|a|
b
取得最小值.
故答案为:-2.
点评:本题考查导数在最值问题的应用,考查数形结合思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津)设a,b∈R,则“(a-b)a2<0”是“a<b”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)设函数f(x)=ex+x-2,g(x)=lnx+x2-3.若实数a,b满足f(a)=0,g(b)=0,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,离心率为
3
3
,过点F且与x轴垂直的直线被椭圆截得的线段长为
4
3
3

(Ⅰ)求椭圆的方程;
(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若
AC
DB
+
AD
CB
=8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)设a∈[-2,0],已知函数f(x)=
x3-(a+5)x,x≤0
x3-
a+3
2
x2+ax,
x>0

(Ⅰ) 证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;
(Ⅱ) 设曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明x1+x2+x3>-
1
3

查看答案和解析>>

同步练习册答案