已知函数y=f(x)(x∈R),则“f(1)<f(2)”是“函数y=f(x)在R上是增函数”的( )
A.充分非必要条件.
B.必要非充分条件.
C.充要条件.
D.非充分非必要条件.
【答案】分析:由“f(1)<f(2)”成立,不能推出“函数y=f(x)在R上是增函数”成立,但由“函数y=f(x)在R上是增函数”,能推出“f(1)<f(2)”成立,从而得出结论.
解答:解:由“f(1)<f(2)”成立,不能推出对任意的x1<x2,f(x1)<f(x2 ),
故不能推出“函数y=f(x)在R上是增函数”,故充分性不成立.
由“函数y=f(x)在R上是增函数”可得“f(1)<f(2)”成立,故必要性成立.
综上,“f(1)<f(2)”是“函数y=f(x)在R上是增函数”的必要不充分条件,
故选B.
点评:本题主要考查充分条件、必要条件、充要条件的定义,属于基础题.