分析 (1)计算两向量的模长可发现$\overrightarrow{a}$2=${\overrightarrow{b}}^{2}$=1.得($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=0即可.
(2)由($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow{b}$)2=($\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow{b}$)2,可得4+2$\sqrt{3}$$\overrightarrow{a}•\overrightarrow{b}$=4-2$\sqrt{3}$$\overrightarrow{a}•\overrightarrow{b}$,⇒$\overrightarrow{a}•\overrightarrow{b}=0$,即-$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα=0,tanα=$\frac{\sqrt{3}}{3}$,即可求得α.
解答 解:(1)∵$\overrightarrow{a}$2=cos2α+sin2α=1,${\overrightarrow{b}}^{2}$=(-$\frac{1}{2}$)2+($\frac{\sqrt{3}}{2}$)2=1.
∴($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-${\overrightarrow{b}}^{2}$=1-1=0,
∴向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$垂直.
(2)∵向量$\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow{b}$的模相等,
∴($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow{b}$)2=($\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow{b}$)2,
整理得4+2$\sqrt{3}$$\overrightarrow{a}•\overrightarrow{b}$=4-2$\sqrt{3}$$\overrightarrow{a}•\overrightarrow{b}$⇒$\overrightarrow{a}•\overrightarrow{b}=0$,
即-$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα=0,
∴tanα=$\frac{\sqrt{3}}{3}$,
∵0≤α<2π,∴α=$\frac{π}{6}$或$\frac{7π}{6}$.
点评 本题考查了平面向量的坐标运算,数量积运算,属于基础题
科目:高中数学 来源: 题型:选择题
| A. | 模型1对应的R2=0.48 | B. | 模型3对应的R2=0.15 | ||
| C. | 模型2对应的R2=0.96 | D. | 模型4对应的R2=0.30 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{f(x)}{{e}^{x}}$在(1,+∞)上是增函数 | B. | x=1是函数y=$\frac{f(x)}{{e}^{x}}$的极小值点 | ||
| C. | 函数y=$\frac{f(x)}{{e}^{x}}$至多有两个零点 | D. | x≤0时f(x)≤ex恒成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{25}{2}$ | B. | $\frac{25}{4}$ | C. | $\frac{25}{8}$ | D. | 25 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [6k-6,6k+2],k∈Z | B. | [11k-6,12k+2],k∈Z | C. | [16k-6,16k-2],k∈Z | D. | [16k-6,16k+2],k∈Z |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com