| A. | $\frac{25}{2}$ | B. | $\frac{25}{4}$ | C. | $\frac{25}{8}$ | D. | 25 |
分析 由f(x)=0结合x的取值范围求出x的值,得出点A的坐标,再设点B(x1,y1),C(x2,y2),由B,C 两点关于A对称,得出x1+x2=5,y1+y2=0,计算($\overrightarrow{OB}$+$\overrightarrow{OC}$)•$\overrightarrow{OA}$的值即可.
解答 解:由f(x)=2sin($\frac{π}{3}$x+$\frac{π}{6}$)=0可得$\frac{π}{3}$x+$\frac{π}{6}$=kπ,k∈Z;
∴x=3k-$\frac{1}{2}$,k∈Z;
又1<x<4,
∴x=$\frac{5}{2}$即A($\frac{5}{2}$,0);
设B(x1,y1),C(x2,y2),
又过点A的直线l与函数的图象交于B、C两点,
∴B,C 两点关于A对称,即x1+x2=5,y1+y2=0;
∴($\overrightarrow{OB}$+$\overrightarrow{OC}$)•$\overrightarrow{OA}$=(x1+x2,y1+y2)•($\frac{5}{2}$,0)=$\frac{5}{2}$(x1+x2)=$\frac{25}{2}$.
故选:A.
点评 本题主要考查了向量的数量积的坐标表示,解题的关键正弦函数对称性质的应用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | -2 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 解答题得分率(x) | 0.39 | 0.30 | 0.25 | 0.28 | 0.55 | 0.33 | 0.36 | 0.40 | 0.40 | 0.42 |
| 整卷得分率(y) | 0.50 | 0.43 | 0.41 | 0.44 | 0.59 | 0.47 | 0.52 | 0.56 | 0.54 | 0.57 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com