精英家教网 > 高中数学 > 题目详情
12.若f′(x0)=6,则$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$等于(  )
A.-3B.3C.-2D.$\frac{1}{3}$

分析 根据函数在某一点处的导数定义,化简并计算$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$的值.

解答 解:f′(x0)=6,则
$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$=-$\frac{1}{2}$•$\underset{lim}{k→0}$$\frac{f{(x}_{0})-f{(x}_{0}-k)}{k}$
=-$\frac{1}{2}$•f′(x0
=-3.
故选:A.

点评 本题考查了函数在某一点处导数的定义与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[-$\frac{a}{2}$,$\frac{1}{2}$]时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列四个命题:
①在△ABC中,若C>$\frac{π}{2}$,则sinA<cosB;
②已知点A(0,3),则函数y=$\sqrt{3}$cosx-sinx的图象上存在一点P,使得|PA|=1;
③函数y=cos2x+2bcosx+c是周期函数,且周期与b有关,与c无关;
④设方程x+sinx=$\frac{π}{2}$的解是x1,方程x+arcsinx=$\frac{π}{2}$的解是x2,则x1+x2=π.
其中真命题的序号是①③.(把你认为是真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知{an}是等比数列,其中|q|<1,且a3+a4=2,a2a5=-8,则S3=(  )
A.12B.16C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)在R上可导,且f(0)=1,当x≠1时,其导函数满f′(x)满$\frac{f′(x)-f(x)}{x-1}$>0,则下列结论错误的是(  )
A.y=$\frac{f(x)}{{e}^{x}}$在(1,+∞)上是增函数B.x=1是函数y=$\frac{f(x)}{{e}^{x}}$的极小值点
C.函数y=$\frac{f(x)}{{e}^{x}}$至多有两个零点D.x≤0时f(x)≤ex恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=(x2+ax+b)ex+1的大致图象如图所示,则a、b的值可能是(  )
A.a=-1,b=2B.a=3,b=-2C.a=4,b=4D.a=-1,b=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=2sin($\frac{π}{3}x+\frac{π}{6}$)(1<x<4)的图象与x轴交于点A,过点A的直线l与函数的图象交于点B、C两点,则($\overrightarrow{OB}+\overrightarrow{OC}$)$•\overrightarrow{OA}$=(  )
A.$\frac{25}{2}$B.$\frac{25}{4}$C.$\frac{25}{8}$D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的通项公式为an=|n-13|,那么满足ak+ak+1+…+ak+19=102的正整数k=2或5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}、{bn}均为等比数列,其前n项和分别为Sn,Tn,若对任意的n∈N*,都有$\frac{S_n}{T_n}=\frac{{{3^n}+1}}{4}$,则$\frac{a_3}{b_3}$=(  )
A.81B.9C.729D.730

查看答案和解析>>

同步练习册答案